PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study on the rheological properties of CL-20/HTPB casting explosives

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The rheological properties of ε-2,4,6,8,10,12-hexanitro-2,4,6,8,10,12hexaazaisowurtzitane (CL-20)/hydroxy-terminated polybutadiene (HTPB) casting explosives with different formulations were tested and analyzed. The effects of both the weight percentage (wt.%) of CL-20 and its particle size, as well as the type and content of plasticizers, on the rheological properties of CL-20/HTPB casting explosives were investigated in detail. The results show that the viscosity and pseudoplasticity of CL-20/HTPB casting explosives increase with increasing wt.% of CL-20 and decreasing particle size. The gradation of CL-20 particle size also affects the rheological properties of the casting explosives. When the mixing ratio of 30 μm to 2 μm particles is 3:1, the viscosity reaches its lowest value and the non-Newtonian index reaches the maximum value of 0.5698. The viscosity, non-Newtonian index and impact sensitivity of the samples studied are clearly decreased by the addition of dioctyl adipate (DOA), dioctyl sebacate (DOS) or dibutyl phthalate (DBP). However, the three plasticizers do not appear to affect the thermal decomposition of CL-20/HTPB casting explosives. With respect to the rheological properties, mechanical properties and sensitivity, DOA is the optimum plasticizer to use in CL-20/HTPB casting explosives.
Rocznik
Strony
237--255
Opis fizyczny
Bibliogr. 33 poz., rys., tab.
Twórcy
autor
  • Chemical Industry and Ecology Institute, North University of China, Taiyuan 030051, China
autor
  • Chemical Industry and Ecology Institute, North University of China, Taiyuan 030051, China
autor
  • Chemical Industry and Ecology Institute, North University of China, Taiyuan 030051, China
Bibliografia
  • [1] Agrawal J.P., Some New High Energy Materials and Their Formulations for Specialized Applications, Propellants Explos. Pyrotech., 2005, 30(5), 316-328.
  • [2] Lee J.S., Hsu C.K., Thermal Properties and Shelf Life of HMX–HTPB Based Plastic-bonded Explosives, Thermochim. Acta, 2002, 392, 153-156.
  • [3] Luo G., Huang H., Zhang M., Guan L.F., Li S.B., Study on Low Vulnerability of Cast-cured PBX Aluminized Explosive, Energ. Mater., 2004, 12(1), 20-22.
  • [4] Jiang D.C., Sun C.W., Zeng F.Q., Yang B., Studies on Explosive Logic Network of Sixpartite Circle, Explosion and Shock Waves, 1997, 17(3), 228-236.
  • [5] Ji L.G., Feng C.G., Cai R.J., Jiao Q.J., Development of Explosive Technique for Explosive Logic Network, Initiators Pyrotech. (Huogongpin), 1996, 4, 29-33.
  • [6] Wen Y.Q., Jiao Q.J., A Study on the Precision Press Loading Technique of a Synchronous Multi-point Explosive Circuit, Acta Armamentarii (Binggong Xuebao), 2006, 27(3), 005.
  • [7] Zheng Y, Wang X.M., Huang Y.S., Li W.B., Li W.B., Design and Experimental Investigation on Multi-point Synchronous Explosive Logic Circuit, Initiators Pyrotech. (Huogongpin), 2008, 1, 1-4.
  • [8] Kalyon D.M., Yaras P., Aral B., Yilmazer U., Rheological Behavior of a Concentrated Suspension: a Solid Rocket Fuel Simulant, J. Rheol., 1993, 37(1), 35-53.
  • [9] Miller R.R., Lee E., Powell R.L., Rheology of Solid Propellant Dispersions, J. Rheol., 1991, 35(5), 901-920.
  • [10] Mudeme S., Masalova I., Haldenwang R., Kinetics of Emulsification and Rheological Properties of Highly Concentrated Explosive Emulsions, Chemical Engineering and Processing: Process Intensification, 2010, 49(5), 468-475.
  • [11] Lu S.Y., Shao Z.Q., Wang F.J., Zhang Y.D., Zhang Z.L., Preparation of New Energetic Gelator and Rheological Properties of Its Gel, Chin. J. Explos. Propellants (Huozhayao Xuebao), 2011, 34(1), 49-53.
  • [12] Zhang W., Fan X.Z., Chen Y.D., Xie W.X., Liu Z.R., Wei H.J., Rheological Study on the Crosslinking of NEPE Propellant, Chemical Journal of Chinese Universities (English Edition), 2009, 30(6), 1230-1234.
  • [13] Zhang D.J., Zhang X.T., Lu L.Y., Zhang J.Y., Study on Influence of Oily Material on Emulsion Matrix Viscosity of On-site Mixing Explosive, Initiators Pyrotech. (Huogongpin), 2013, 1(1), 42-45.
  • [14] National Military Standard of China, Experimental Methods of Sensitivity and Safety (in Chinese), GJB/772A-97, 1997.
  • [15] Chong J.S., Christiansen E.B., Baer A.D., Rheology of Concentrated Suspensions, J. Appl. Polym. Sci., 1971, 15(8), 2007-2021.
  • [16] Liu D.M., Particles Packing and Rheological Property of Highly-concentrated Ceramic Suspensions: m φ Determination and Viscosity Prediction, J. Mater. Sci., 2000, 35(21), 5503-5507.
  • [17] Chang J.C., Lange F.F., Pearson D.S., Viscosity and Yield Stress of Alumina Slurries Containing Large Concentrations of Electrolyte, J. Am. Ceram. Soc., 1994, 77(1), 19-26.
  • [18] Hoffman R.L., Explanations for the Cause of Shear Thickening in Concentrated Colloidal Suspensions, J. Rheol., 1998, 42(1), 111-123.
  • [19] Wang J.H., Shi Q.N., Xi J., Research on Critical Powder Loading for Ti-6Al-4V Alloy Feedstocks, Hot Working Technolog., 2012, 41(5), 11-13.
  • [20] Liu D.M., Rheology of Aqueous Suspensions Containing Highly Concentrated Nano-sized Zirconia Powders, J. Mater. Sci. Lett., 1998, 17(22), 1883-1885.
  • [21] Dzuy N.Q., Boger D.V., Yield Stress Measurement for Concentrated Suspensions, J. Rheol., 1983, 27(4), 321.
  • [22] Dash R.K., Mehta K.N, Jayaraman G., Casson Fluid Flow in a Pipe Filled with a Homogeneous Porous Medium, Int. J. Eng. Sci., 1996, 34(10), 1145-1156.
  • [23] Keentok M., The Measurement of the Yield Stress of Liquids, Rheol. Acta, 1982, 21(3), 325-332.
  • [24] Mewis J., Spaull A.J.B., Rheology of Concentrated Dispersions, Adv. Colloid Interface Sci., 1976, 6(3), 173-200.
  • [25] Edirisinghe M.J., Evans J.R.G., Review: Fabrication of Engineering Ceramics by Injection Moulding.I. Materials Selection, Int. J. High Technol. Ceram., 1986, 2(1), 1-31.
  • [26] Lange F.F., Powder Processing Science and Technology for Increased Reliability, J. Am. Ceram. Soc., 1989, 72(1), 3-15.
  • [27] Bergström L., Schilling C.H., Aksay I.A., Consolidation Behavior of Flocculated Alumina Suspensions, J. Am. Ceram. Soc., 1992, 75(12), 3305-3314.
  • [28] Yanez J.A., Shikata T., Lange F.F., Pearson D.S., Shear Modulus and Yield Stress Measurements of Attractive Alumina Particle Networks In Aqueous Slurries, J. Am. Ceram. Soc., 1996, 79(11), 2917-2917.
  • [29] Ogawa A., Yamada H., Matsuda S., Okajima K., Doi M., Viscosity Equation for Concentrated Suspensions of Charged Colloidal Particles, J. Rheol., 1997, 41(3), 769-785.
  • [30] Pang W.Q., Fan X.Z., Xu H.X., Rheological Properties of Agglomerated Boron Particles in the HTPB-based Fuel-rich Propellant, Chin. J. Explos. Propellants (Huozhayao Xuebao), 2010, 33(3), 84-87.
  • [31] Li B.S., Jiang H.Y., Li Z.Q., Fan H.B., An G.Y., Effect of Bipeak Grain-size Distribution of ZrO2 Powder on Viscosity of Coating in Ti-alloy Investment Casting, Foundry, 1999, (6), 22-24.
  • [32] Shi F.C., Shi Z.B., Jiang P.P., Plasticizer and Its Application, Vol.1, Chemical Industry Press, Beijing, 2002, pp. 1-2.
  • [33] Gao L.L., Xi P., Application of ATP-28 in Cast-cured Explosive, Chin. J. Energ. Mater. (Hanneng Cailiao), 2008, 16(6), 689-692.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-86d41cc1-9358-423c-8f34-e7caceceb5ec
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.