PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Sensor performance and cut-off wavelength tradeoffs of III-V focal plane arrays

Treść / Zawartość
Identyfikatory
Warianty tytułu
Konferencja
Quantum Structure Infrared Photodetectors - QSIP : International Conference 2020/2022 (11 ; 2022 ; Kraków, Poland)
Języki publikacji
EN
Abstrakty
EN
Infrared detector technologies engineered from III-V semiconductors such as strained-layer superlattice, quantum well infrared photodetectors, and quantum dot infrared photodetectors provide additional flexibility to engineer bandgap or spectral response cut-offs compared to the historical high-performance detector technology of mercury/cadmium/telluride. The choice of detector cut-off depends upon the sensing application for which the system engineer is attempting to maximize performance within an expected ensemble of operational scenarios that define objects or targets to be detected against specific environmental backgrounds and atmospheric conditions. Sensor performance is typically characterised via one or more metrics that can be modelled or measured experimentally. In this paper, the authors will explore the impact of detector cut-off wavelength with respect to different performance metrics such as noise equivalent temperature difference and expected target detection or identification ranges using analytical models developed for several representative sensing applications encompassing a variety of terrestrial atmospheric conditions in the mid-wave and long-wave infrared wavelength bands. The authors will also report on their review of recently published literature concerning the relationships between cut-off wavelength and the other detector performance characteristics such as quantum efficiency or dark current for a variety of detector technologies.
Twórcy
  • Electro-Optical Systems Laboratory, Georgia Tech Research Institute, 925 Dalney St. NW, Atlanta, GA 30332, USA
  • Electro-Optical Systems Laboratory, Georgia Tech Research Institute, 925 Dalney St. NW, Atlanta, GA 30332, USA
  • Electro-Optical Systems Laboratory, Georgia Tech Research Institute, 925 Dalney St. NW, Atlanta, GA 30332, USA
Bibliografia
  • [1] Rogalski, A. HgCdTe infrared detector material: history, status and outlook. Rep. Prog. Phys. 68 2267 (2005) https://doi.org/10.1088/0034-4885/68/10/R01
  • [2] Dhar, N. K., Dat, R. & Sood, A. K. Advances in Infrared Detector Array Technology. in Optoelectronics. Advanced Materials and Devices (Eds. Pyshkin, S. L. & Ballato, J. M.) Ch. 7 (2013). https://doi.org/10.5772/5665
  • [3] Rogalski, A., Martyniuk, P. & Kopytko, M. Challenges of small-pixel infrared detectors: a review. Rep. Prog. Phys. 79, 046501 (2016). https://doi.org/10.1088/0034-4885/79/4/046501
  • [4] Haran, T. L., James, J. Ch. & Cincotta, T. E. Relative performance analysis of IR FPA technologies from the perspective of system level performance. Infrared Phys. Technol. 84, 7-20 (2017). https://doi.org/10.1016/j.infrared.2017.03.007
  • [5] Haran, T. L., James, J. Ch., Lane, S. E. & Cincotta, T. E. Quantum efficiency and spatial noise tradeoffs for III-V focal plane arrays. Infrared Phys. Technol. 97, 309-318 (2019). https://doi.org/10.1016/j.infrared.2019.01.001
  • [6] U.S. Army CERDEC, Fort Belvoir, VA. Vollmerhausen, R. & Jacobs, E. The targeting task performance (TTP) metric: a new model for predicting target acquisition performance. Technical report AMSEL-NV-TR-230, 18-42, 47-51 (2006).
  • [7] Phillips Laboratory, Hanscon, Massachusetts. Kneizis, F. X. et al. The Modtran 2/3. Report And Lowtran 7 Model (1996).
  • [8] Asici, B. et al. The status of LWIR MCT detector development at ASELSAN. Proc. SPIE 11002, 110021A (2019). https://doi.org/10.1117/12.2518867
  • [9] Cabrera, M. S. et al. Development of 13-μm cutoff HgCdTe detector arrays for astronomy. Proc. SPIE 5, 036005 (2019). https://doi.org/10.1117/1.JATIS.5.3.036005
  • [10] Choi, K. K. et al. Long wavelength resonator-QWIP. Proc. SPIE 9819, 981917 (2016). https://doi.org/10.1117/12.2224313
  • [11] Choi, K.K., Sun, S, & Olver, K. Resonator-QWIP FPA development. Proc. SPIE 9451, 94512K (2015). https://doi.org/10.1117/12.2176446
  • [12] Choi, K. K. et al. Small pitch resonator-QWIP detectors and arrays. Infrared Phys. Technol. 94, 118-125 (2018). https://doi.org/10.1016/j.infrared.2018.09.006
  • [13] Eich, D. et al. MCT-based high performance bispectral detectors by AIM. J. Electron. Mater. 48, 6074-6083 (2019). https://doi.org/10.1007/s11664-019-07177-8
  • [14] Fastenau, J. M. et al. Direct MBE growth of metamorphic nBn infrared photodetectors on 150 mm Ge-Si substrates for heterogeneous integration. J. Vac. Sci. Technol. B 37, 031216 (2019). https://doi.org/10.1116/1.5088784
  • [15] Huang, E. et al. Small pixel MWIR sensors for low SWaP applications. Proc. SPIE 11741, 117410S (2021). https://doi.org/10.1117/12.2588774
  • [16] Huang, M. et al. InAs/GaAsSb type-II superlattice LWIR focal plane array detectors grown on InAs substrates. IEEE Photon. Technol. Lett. 32, 453-456 (2020). https://doi.org/10.1109/LPT.2020.2973204
  • [17] Klipstein, P. C. et al. Development and production of array barrier detectors at SCD. J. Electron. Mater. 46, 5386-5393 (2017). https://doi.org/10.1007/s11664-017-5590-x
  • [18] Klipstein, P. C. et al. Type II superlattice infrared detector technology at SCD. J. Electron. Mater. 47, 5725-5729 (2018). https://doi.org/10.1007/s11664-018-6527-8
  • [19] Rubaldo, L. et al. Latest improvements on long wave p on n HgCdTe technology at Sofradir. Proc. SPIE 10177, 101771E (2015). https://doi.org/10.1117/12.2264606
  • [20] Rubaldo, L. et al. Recent advances in Sofradir IR on II-VI photodetectors for HOT applications. Proc. SPIE 9755, 97551X (2016). https://doi.org/10.1117/12.2208419
  • [21] Rubaldo, L. et al. State of the art HOT performances for Sofradir II-VI extrinsic technologies. Proc. SPIE 9819, 98191l (2016). https://doi.org/10.1117/12.2229308
  • [22] Shkedy, L. et al. Development of 10μm pitch XBn detector for low SWaP MWIR applications. Proc. SPIE 9819, 98191D (2016). https://doi.org/10.1117/12.2220395
  • [23] Shkedy, L. et al. HOT MWIR detector with 5 um pitch. Proc. SPIE 11741, 117410W (2021). https://doi.org/10.1117/12.2585374
  • [24] Sun, J. et al. Advanced inductively coupled plasma etching processes for fabrication of resonator-quantum well infrared photodetector, Infrared Phys. Technol. 70 25-29 (2015). https://doi.org/10.1016/j.infrared.2014.09.022
  • [25] Sun, J. N. & Choi, K. K. Fabrication of resonator-quantum well infrared photodetector focal plane array by inductively coupled plasma etching. Proc. SPIE 55, 026119 (2016). https://doi.org/10.1117/1.OE.55.2.026119
  • [26] Sun, J., Choi, K. K., Olver, K. & Fu, R. X. Fabrication of resonator-quantum well infrared photodetector (R-QWIP) with 10.2 μm cutoff. Proc. SPIE 9609, 96090J (2015). https://doi.org/10.1117/12.2186433
  • [27] Ting, D. Z. et al. InAs/InAsSb type-II superlattice mid-wavelength infrared focal plane array with significantly higher operating temperature than InSb. IEEE Photon. J. 10, 1-6 (2018). https://doi.org/10.1109/JPHOT.2018.2877632
  • [28] Choi, K. K., Allen, S. C., Sun, J. G. & DeCuir, E. A. Resonant detectors and focal plane arrays for infrared detection. Infrared Phys. Technol. 84, 94-101 (2017). https://doi.org/10.1016/j.infrared.2016.12.005
  • [29] Deng, G., Yang, W., Peng, Z. & Zhang, Y. High operating temperature InAsSb-based mid-infrared focal plane array with a band-aligned compound barrier. Appl. Phys. Lett. 116, 031104 (2020). https://doi.org/10.1063/1.5133093
  • [30] Gunapala, G. et al. Antimonides T2SL mid-wave and long-wave infrared focal plane arrays for earth remote sensing applications. Proc. SPIE 11288, 112880K (2020). https://doi.org/10.1117/12.2543896
  • [31] Höglund, L. et al. Type-II superlattice SWaP IDDCA production at IRnova. Proc. SPIE 11407, 114070P (2020). https://doi.org/10.1117/12.2558707
  • [32] Ivanov, R. et al. III-V based infrared detectors are imposing new standards. Proc. SPIE 11407, 114070Q (2020). https://doi.org/10.1117/12.2558736
  • [33] Jiang, Zh. et al. Mid/-long-wave dual-band infrared focal plane array based on type-II InAs/GaSb superlattice. Proc. SPIE 10826, 108261X (2018). https://doi.org/10.1117/12.2506053
  • [34] Kimura, D. et al. Quantum well infrared imaging sensor with high-sensitivity in the wavelength range of up to 15 μm. SEI Techn. Rev. 86, 41-44 (2018). https://sumitomoelectric.com/sites/default/files/ 2020-12/download_documents/86-08.pdf
  • [35] Klipstein, P. C. et al. HOT MWIR technology at SCD. Proc. SPIE 12107, 121070Q (2022). https://doi.org/10.1117/12.2615622
  • [36] Klipstein, P. C. et al. Low SWaP MWIR detector based on XBn focal plane array. Proc. SPIE 8704, 87041S (2013). https://doi.org/10.1117/12.2015747
  • [37] Oguz, F. et al. High performance 15-μm pitch 640×512 MWIR InAs/GaSb type-II superlattice sensors. IEEE J. Quantum Electron. 58, 1-6 (2022). https://doi.org/10.1109/JQE.2021.3129535
  • [38] Rafol, B. et al. Modulation transfer function measurements of type-II mid- wavelength and long-wavelength infrared superlattice focal plane arrays Infrared Phys. Technol. 96, 251-261 (2019). https://doi.org/10.1016/j.infrared.2018.11.006
  • [39] Soibel, A. et al. Mid-wavelength infrared InAsSb/InAs nBn detectors and FPAs with very low dark current density. Appl. Phys .Lett. 114, 161103 (2019). https://doi.org/10.1063/1.5092342
  • [40] Sun, J., Choi, K. K, Olver, K. A. & Fu, R. X. Design and fabrication of resonator-QWIP for SF6 gas sensor application. Proc. SPIE 10149, 101490S (2017). https://doi.org/1117/12.2257990
  • [41] Teng, T. et al. Demonstration of MOCVD-grown long-wavelength infrared InAs/GaSb superlattice focal plane array. IEEE Access 9, 60689-60694 (2021). https://doi.org/10.1109/ACCESS.2021.3072845
  • [42] Ting, D. Z. et al. Antimonide e-SWIR, MWIR, and LWIR barrier infrared detector and focal plane array development. Proc. SPIE 10624, 1062410 (2018). https://doi.org/10.1117/12.2305248
  • [43] Ting, D. Z. et al. Long wavelength InAs/InAsSb superlattice barrier infrared detectors with p-type absorber quantum efficiency enhancement. Appl. Phys. Lett. 118, 133503 (2021). https://doi.org/10.1063/5.0047937
  • [44] Wang, L. et al. Fabrication and characterization of InAs/GaSb type-II superlattice long-wavelength infrared detectors aiming high temperature sensitivity. J. Light. Technol. 38, 6129-6134 (2020). https://doi.org/10.1109/JLT.2020.3005974
  • [45] Cervera, C. et al. Low-dark current p-on-n MCT detector in long and very-long wavelength infrared. Proc. SPIE 9451, 945129 (2015). https://doi.org/10.1117/12.2179216
  • [46] Hanna, S. et al. Low dark current LWIR and VLWIR HgCdTe focal plane arrays at AIM. Proc. SPIE 10000, 100000P (2016). https://doi.org/10.1117/12.2244514
  • [47] Lee, D. et al. Law 19: The ultimate photodiode performance metric. Proc. SPIE 11407, 114070X (2020) . https://doi.org/10.1117/12.2564902
  • [48] Baier, N. et al. MCT planar p-on-n LW and VLW IRFPAs. Proc. SPIE 8704, 87042P (2013). https://doi.org/10.1117/12.2016369
  • [49] Eich, D. et al. Progress of MCT detector technology at AIM towards smaller pitch and lower dark current. J. Electron. Mater. 46, 5448-5457 (2017). https://doi.org/10.1007/s11664-017-5596-4
  • [50] Hanna, S. et al. MCT-Based LWIR and VLWIR 2D focal plane detector arrays for low dark current applications at AIM. J. Electron. Mater. 45, 4542-4551 (2016). https://doi.org/10.1007/s11664-016-4523-4
  • [51] Péré-Laperne, N. et al. Improvements of long wave p on n HgCdTe infrared technology. Proc. SPIE 9933, 99220H (2016). https://doi.org/10.1117/12.2241440
  • [52] Craig, A. P., Letka, V., Carmichael, M., Golding, T. & Marshall, A. R. InAsSb-based detectors on GaSb for near-room-temperature operation in the mid-wave infrared. Appl. Phys. Lett. 118, 251103 (2021). https://doi.org/10.1063/5.0051049
  • [53] Deng, G. et al. High operating temperature pBn barrier mid-wavelength infrared photodetectors and focal plane array based on InAs/InAsSb strained layer superlattices. Opt. Express 28, 17611-17619 (2020). https://doi.org/10.1364/OE.395770
  • [54] Gunapala, S. et al. Long-Wavelength Infrared Digital Focal Plane Arrays For Earth Remote Sensing Applications. in IGARSS 2019 IEEE International Geoscience and Remote Sensing Symposium 8856-8859 (2019). https://doi.org/10.1109/IGARSS.2019.8900531
  • [55] Huang, M. et al. InAs/GaAsSb type-II superlattice LWIR focal plane arrays detectors grown on InAs substrates. IEEE Photon. Technol. Lett. 32, 453-456 (2020). https://doi.org/10.1109/LPT.2020.2973204
  • [56] Jiang, Z. et al. Mid-/long-wave dual-band infrared focal plane array based on type-II InAs/GaSb superlattice. Proc. SPIE 10836, 108261X (2018). https://doi.org/10.1117/12.2506053
  • [57] Kaya, Y. et al. Two-band ZnCdSe/ZnCdMgSe quantum well infrared photodetector. AIP Adv. 8, 075105 (2018). https://doi.org/10.1063/1.5013607
  • [58] Kopytko, M. et al. Investigation of surface leakage current in MWIR HgCdTe and InAsSb barrier detectors. Semicond. Scie. Technol. 33, 125010 (2018). https://doi.org/10.1088/1361-6641/aae768
  • [59] Lee, H. J. et al. Dark current improvement due to dry-etch process in InAs/GaSb type-II superlattice LWIR photodetector with nBn structure. Infrared Phys. Technol. 94, 161-164 (2018). https://doi.org/10.1016/j.infrared.2018.09.009
  • [60] Lee, H. J., Ko, S. Y., Kim, Y. H. & Nah, J. Surface leakage current reduction of InAsSb nBn MWIR HOT detector via hydrogen peroxide treatment. Infrared Phys. Technol. 112, 103597 (2021). https://doi.org/10.1016/j.infrared.2020.103597
  • [61] Martijn, H. et al. QWIPs at IRnova, a status update. Proc. SPIE 9819, 981918 (2016). https://doi.org/10.1117/12.2228348
  • [62] Péré-Laperne, N. et al. Latest developments of 10 μm pitch HgCdTe diode array from the legacy to the extrinsic technology. Proc. SPIE 9819, 981920 (2016). https://doi.org/10.1117/12.2228720
  • [63] Ting, D. Z. et al. Mid-wavelength high operating temperature barrier infrared detector and focal plane array. Appl. Phys. Lett. 113, 021101 (2018). https://doi.org/10.1063/1.5033338
  • [64] Ting, D. Z. et al. Type-II superlattice mid-wavelength infrared focal plane arrays for CubeSat hyperspectral imaging. IEEE Photon. Technol. Lett. 34, 329-332 (2022). https://doi.org/10.1109/LPT.2022.3156048
  • [65] Wang, F. et al. Fabrication of a 1024×1024 format long wavelength infrared focal plane array based on type-II superlattice and barrier enhanced structure. Infrared Phys. Technol. 115, 103700 (2021). https://doi.org/10.1016/j.infrared.2021.103700
  • [66] Wang, L. et al. Investigation of low frequency noise-current correlation for the InAs/GaSb T2SL long-wavelength infrared detector. Opt. Quantum Electron. 54, 286 (2021). https://doi.org/10.1007/s11082-021-03450-5
  • [67] Xu, J. et al. Effects of etching processes on surface dark current of long-wave infrared InAs/GaSb superlattice detectors. Infrared Phys. Technol. 107, 103277 (2020). https://doi.org/10.1016/j.infrared.2020.103277
  • [68] Diel, W. et al. High-resolution QWIP and T2SL IDDCAs by IRnova. Proc. SPIE 10624, 1062410 (2018). https://doi.org/10.1117/12.2304865
  • [69] Höglund, L. et al. Advantages of T2SL: results from production and new development at IRnova. Proc. SPIE 9819, 98180Z (2016). https://doi.org/10.1117/12.2227466
  • [70] Klipstein, P. C. et al. Type II superlattice technology for LWIR detectors. Proc. SPIE 9819, 98190T (2016). https://doi.org/10.1117/12.2222776
  • [71] Nghiem, J. et al. Radiometric characterization of type II InAs/GaSb superlattice (T2SL) midwave infrared photodetectors and focal plane arrays. Proc. SPIE 10562, 105623Y (2016). https://doi.org/10.1117/12.2296053
  • [72] Rubaldo, L. et al. Achievement of high image quality MCT sensors with Sofradir vertical industrial model. Proc. SPIE 10624, 106240U (2018). https://doi.org/10.1117/12.2307344
  • [73] Ribet-Mohamed, I. et al. Temporal stability and correctability of a MWIR T2SL focal plane array. Infrared Phys. Technol. 96, 145-150 (2019). https://doi.org/10.1016/j.infrared.2018.10.028
  • [74] Rubaldo, L. et al. Image quality improvement against the backdrop of SWAP and pitch reduction. Proc. SPIE 11002, 1100219 (2019). https://doi.org/10.1117/12.2520412
  • [75] Ivanov, R. et al. QWIP as solution for mobile VLWIR imaging systems. Proc. SPIE 11741, 117411F (2021). https://doi.org/10.1117/12.2588556
  • [76] Tennant, W. R. “Rule 07” revisited: Still a good heuristic predictor of p/n HgCdTe photodiode performance? J. Electron. Mater. 39, 1030-1035 (2010). https://doi.org/10.1007/s11664-010-1084-9
  • [77] Rogalski, A. Quantum well photoconductors in infrared detector technology. J. Appl. Phys. 93, 4355-4391 (2003). https://doi.org/10.1063/1.1558224
  • [78] Rhiger, D. R. Performance comparison of long-wavelength infrared type II superlattice devices with HgCdTe. J. Electron. Mater. 40, 1815-18225 (2011). https://doi.org/10.1007/s11664-011-1653-6
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-86d40b9e-cebe-4d81-8679-6f40d53b1bcd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.