PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Redispersible core-shell polymer powders as valuable binders in coating and building materials

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Redyspersyjne proszki polimerów typu rdzeń-otoczka jako przydatne spoiwa w wyrobach powłokowych i budowlanych
Języki publikacji
EN
Abstrakty
EN
Redispersible powders obtained from polymer dispersions in spraydrying process are useful raw materials for the modification of cement based compositions of construction chemicals and, to some extent, in dry paints and adhesives formulations. Acrylic free flowing powders prepared from core-shell dispersions characterized with broad range of glass transition temperatures are easy obtained using simple spray-drying technology. High redispersibility is reached by the presence of functional monomers containing acid groups, properly distributed in the polymer particles. Such powders may be used as binders not only in the adhesives and mortars, but also in thick-coating materials and paints.
PL
Redyspersyjne proszki polimerowe otrzymywane w procesie suszenia rozpyłowego z dyspersji polimerowych są przydatnymi surowcami do modyfikacji zapraw cementowych oraz są używane, w pewnym stopniu, w recepturach suchych farb i klejów. Sypkie proszki akrylowe charakteryzujące się szerokim zakresem temperatur zeszklenia są otrzymywane w prosty sposób z akrylowych dyspersji rdzeń-otoczka poprzez zastosowanie technologii suszenia rozpyłowego. Łatwa redyspergowalność proszku spowodowana jest obecnością monomerów funkcyjnych zawierających grupy kwasowe odpowiednio ulokowane w cząsteczkach polimeru. Tego typu proszki mogą być używane jako spoiwa organiczne nie tylko w klejach i zaprawach, lecz także w farbach i materiałach grubopowłokowych.
Rocznik
Tom
Strony
36--40
Opis fizyczny
Bibliogr. 57 poz.
Twórcy
Bibliografia
  • [1] L. Mara, L. M. Saija. 1997. „Caratterizzazione micromorfologica di poliacrilati ridisperdibili in acqua.” La Chimica e l’Industria 79(4): 339–343.
  • [2] M. C. Tsai, M. J. Burch, J. A. Lavelle. 1993. “Solid Grade Acrylic Cement Modifiers.” In: L. A. Kuhlmann, D. G. Walters (eds.). Polymer-Modified Hydraulic-Cement Mixtures. Philadelphia, Pennsylvania: ASTM.
  • [3] N. Tarannum, K. Pooja, R. Khan. 2020. “Preparation and Application of Hydrophobic Multicomponent Based Redispersible Polymer Powder: A Review.” Construction and Building Materials 247: 118579. DOI: 10.1016/j.conbuildmat.2020.118579.
  • [4] SIDLEYCHEM Materials. 2018. The Development History of Redispersible Powder. https://sidleychem.com/the-development-history-of-redispersiblepowder/ (access: 2.08.2024).
  • [5] M. Bin Mobarak, Md. S. Hossain, M. Mahmud, S. Ahmed. 2021. “Redispersible Polymer Powder Modified Cementitious Tile Adhesive as an Alternative to Ordinary Cement-Sand Grout.” Heliyon 7(11): e08411. DOI: 10.1016/j.heliyon.2021.e08411.
  • [6] H. Zeh, H. Baumgartl. 1995. “A Contribution of VOC Abatement and Waste Management: Redispersible Powder Paints.” Surface Coatings International 78(4): 132–138.
  • [7] D. G. Walters. 1992. “VAE Redispersible-Powder Hydraulic-Cement Admixtures.” Concrete International 14(4): 30–34.
  • [8] D. D. L. Chung. 2004. “Review: Use of Polymers for Cement-Based Structural Materials.” Journal of Materials Science 39: 2973–2978.
  • [9] N. Shingo, T. Kishida. 1988. Aqueous Coating Composition. European Patent Office: EP0292004A2.
  • [10] J. Breitenbach, K. Kolter, A. Schmitt. 1997. Polymer Powders Redispersible in Aqueous Solution. US Patent: 6281282 B1.
  • [11] H. Hendrickx, C. Nootens. 2001. “Special Co-Monomers for Solvent-Free Decorative Paints.” European Coatings Journal 6: 28–35.
  • [12] M. C. von Trentini, G. Clamen, B. Pollet. 1993. “Acrylic Redispersible Powder Technology – Innovation and Versatility.” Proceedings of the 1st Conchem International Conference. Karlsruhe.
  • [13] C. C. Raines, H. Starmer. 1991. Free Flowing Particles of an Emulsion Polymer Having SiO2 Incorporated Therein. US Patent: 5017630.
  • [14] M. Umiński, L. M. Saija. 1998. “Spray Drying of Low-Tg Acrylic Dispersions.” Surface Coatings International 81(11): 557–560. DOI: 10.1007/BF02693083.
  • [15] F. Brückmann, A. Overbeek, T. Nabuurs. 2001. “Self-Crosslinking Surfactant Free Acrylic Dispersions.” European Coatings Journal 6: 53–60.
  • [16] L. M. Saija, M. Umiński. 2002. “Synthesis and Characterisation of Core-Shell Acid Functionalised Polyacrylate Dispersions.” Surface Coatings International Part B: Coatings Transactions 85: 149–153. DOI: 10.1007/BF02699756.
  • [17] M. Umiński, L. M. Saija. 2002. “Synthesis and Application of Phase-Separated Copolymer Dispersions.” 5th International Conference Advances in Coatings Technology: Conference Papers. Katowice.
  • [18] A. Aguiar, S. González-Villegas, M. Rabelero, E. Mendizábal, J. E. Puig, J. M. Domínguez, I. Katime. 1999. “Core-Shell Polymers with Improved Mechanical Properties Prepared by Microemulsion Polymerization.” Macromolecules 32(20): 6767–6771. DOI: 10.1021/ma981703s.
  • [19] M. Umiński, L. M. Saija. 2004. “Synthesis and Application of Phase-Separated Acrylic Copolymer Dispersions.” Paint and Coatings Industry 20(6): 82–88.
  • [20] L. M. Saija, M. Umiński, S. A. Pieh. 1996. Redispergierbare, pulverförmige Kern-Mantel-Polymere, deren Herstellung und Verwendung. Europäische Patentanmeldung: EP0725092A2.
  • [21] G. Lundsten, M. Lindberg. 2006. “A Styrene Acrylic Dispersion for VOC Free Paints and Plasters.” 7th International Conference Advances in Coatings Technology: Conference Papers. Warsaw.
  • [22] M. Umiński. 2023. “Core-Shell Copolymers and Hybrid Composites as Valuable Raw Materials for Industrial Coatings.” Paint and Coatings Industry. https://digitaledition.pcimag.com/november-2023/feature-uminski/ (access: 20.11.2023).
  • [23] X. Liu, X. D. Fan, M. F. Tang, Y. Nie. 2008. “Synthesis and Characterization of Core-Shell Acrylate Based Latex and Study of Its Reactive Blends.” International Journal of Molecular Sciences 9(3): 342–354. DOI: 10.3390/ijms9030342.
  • [24] M. Umiński. 2009. “Phase-Separated Polymer Dispersions.” Paint and Coatings Industry 25(6): 36–39.
  • [25] M. Umiński. 2007. “Environment-Friendly Polymeric Binders.” Paint and Coatings Industry 23(8): 38–43.
  • [26] A. Garzon. 2003. “Waterborne Meets Solventborne: New Self-Crosslinking, Optional Dual-Cure Acrylic Dispersions for Furniture or Parquet Coatings.” European Coatings Journal 9: 56–64.
  • [27] J. Kozakiewicz, J. Trzaskowska, W. Domanowski, A. Kieplin, I. Ofat-Kawalec, J. Przybylski, M. Woźniak, D. Witwicki, K. Sylwestrzak. 2019. “Studies on Synthesis and Characterization of Aqueous Hybrid Silicone-Acrylic and Acrylic- -Silicone Dispersions and Coatings. Part I.” Coatings 9(1): 25. DOI: 10.3390/coatings9010025.
  • [28] S. M. Thaker, P. A. Mahanwar, V. V. Patil, B. N. Thorat. 2010. “Synthesis and Spray Drying of Water-Redispersible Polymer.” Drying Technology 28(5): 669–676. DOI: 10.1080/07373931003799152.
  • [29] L. M. Saija, M. Umiński. 1999. “Water-Redispersible Low-Tg Acrylic Powders for the Modification of Hydraulic Binder Compositions.” Journal of Applied Polymer Science 71: 1781–1787. DOI: 10.1002/(SICI)1097-4628(19990314)71:11<1781::AIDAPP7> 3.0.CO;2-2.
  • [30] M. Umiński, L. M. Saija. 2003. “Preparation and Characterisation of Re-Dispersible Acrylic Powders.” Pigment and Resin Technology 32(6): 364–370. DOI: 10.1108/03699420310507812.
  • [31] B. Pilch-Pitera, J. Kozakiewicz, I. Ofat, J. Trzaskowska, M. Špirková. 2013. „Nanoproszki polimerowe o budowie rdzeń-otoczka jako modyfikatory poliuretanowych lakierów proszkowych”. Scientific Conference: Modification of Polymers. Kudowa-Zdrój.
  • [32] B. Pilch-Pitera, J. Kozakiewicz, I. Ofat, J. Trzaskowska, M. Špirková. 2015. “Silicone- Acrylic Hybrid Aqueous Dispersions of Core-Shell Particle Structure and Corresponding Silicone-Acrylic Nanopowders Designed for Modification of Powder Coatings and Plastics. Part III: Effect of Modification with Selected Silicone-Acrylic Nanopowders on Properties of Polyurethane Powder Coatings.” Progress in Organic Coatings 78: 429–436. DOI: 10.1016/j.porgcoat.2014.05.031.
  • [33] H. Kuczyńska, J. Kozakiewicz. 2008. “Farby proszkowe modyfikowane nanocząstkami polimerowymi”. Ochrona przed Korozją 51(12): 440–444.
  • [34] S. Caimi, E. Timmerer, M. Banfi, G. Storti, M. Morbidelli. 2018. “Core-Shell Morphology of Redispersible Powders in Polymer-Cement Waterproof Mortars.” Polymers 10(10): 1122. DOI: 10.3390/polym1010122.
  • [35] L. M. Saija, V. Stefanoli, M. Umiński, M. Cozzi. 1995. “Characterization of Core- -Shell Functionalized Acrylic Dispersions by Acid-Base Titration and Surface Charge Determination.” Journal of Dispersion Science and Technology 16(3– 4): 273–282. DOI: 10.1080/01932699508943679.
  • [36] M. Umiński, L. M. Saija. 1995. “Fast Method of Total Acid Groups Determination in Functionalized Acrylic Dispersions.” Journal of Dispersion Science and Technology 16(6): 511–519. DOI: 10.1080/01932699508943702.
  • [37] N. Tarannum, K. Pooja. 2022. “Recent Trends and Applications in the Research and Development Activities of Redispersible Powder: A Vision of Twenty-First Century.” Polymer Bulletin 79: 8093–8142. DOI: 10.1007/s00289-021-03928-y.
  • [38] I. Ludwig, W. Schabel, M. Kind, J. C. Castaing, P. Ferlin. 2007. “Drying and Film Formation of Industrial Waterborne Latices.” AIChE Journal 53(3): 549–560. DOI: 10.1002/aic.11098.
  • [39] A. Wetzel, M. Herwegh, R. Zurbriggen, F. Winnefeld. 2012. “Influence of Shrinkage and Water Transport Mechanisms on Microstructure and Crack Formation on Tile Adhesive Mortars.” Cement and Concrete Research 42(1): 39–50. DOI: 10.1016/j.cemconres.2011.07.007.
  • [40] A. Zanoni, C. Casiraghi, R. Po, P. Biagini, M. Sponchioni, D. Moscatelli. 2023. “Redispersible Polymer Powders with High Bio-Based Content from Core-Shell Nanoparticles.” Macromolecular Materials and Engineering 308: 2200443. DOI: 10.1002/mame.202200443.
  • [41] L. Niu, L. Lei, Z. Xia. 2013. “Redispersible Polymer Powder Functionalized with NMA and Its Adhesive Properties in Dry-Mixed Coatings.” Journal of Adhesion Science and Technology 27(13): 1432–1445. DOI: 10.1080/01694243.2012.742401.
  • [42] X. Fan, L. Niu. 2015. “Performance of Redispersible Polymer Powders in Wall Coatings.” Journal of Adhesion Science and Technology February 29(4): 296– –307. DOI: 10.1080/01694243.2014.986023.
  • [43] J. Hain, A. Pich, H. J. Adler. 2006. „Multitalentierte Nanohybridpartikel”. Farbe und Lack 112(12): 30–34.
  • [44] D. T. Thompson. 2007. “Using Gold Nanoparticles for Catalysis.” Nano Today 2(4): 40–43. DOI: 10.1016/S1748-0132(07)70116-0.
  • [45] K. Tanabe. 2007. “Optical Radiation Efficiencies of Metal Nanoparticles for Optoelectronic Applications.” Materials Letters 61(23–24): 4573–4575. DOI: 10.1016/j.matlet.2007.02.053.
  • [46] K. Saha, S. S. Agasti, C. Kim, X. Li, V. M. Rotello. 2012. “Gold Nanoparticles in Chemical and Biological Sensing.” Chemical Reviews 112(5): 2739–2779. DOI: 10.1021/cr2001178.
  • [47] V. Chiozzi, F. Rossi. 2020. “Inorganic-Organic Core/Shell Nanoparticles: Progress and Applications.” Nanoscale Advances 2(11): 5090–5105, DOI: 10.1039/D0NA00411A.
  • [48] F. Kesisoglou, S. Panmai, Y. Wu. 2007. “Nanosizing – Oral Formulation Development and Biopharmaceutical Evaluation.” Advanced Drug Delivery Reviews 59(7): 631–644. DOI: 10.1016/j.addr.2007.05.003.
  • [49] G. G. Matlou, H. Abrahamse. 2021. “Hybrid Inorganic-Organic Core-Shell Nanodrug Systems in Targeted Photodynamic Therapy of Cancer.” Pharmaceutics 13(11): 1773. DOI: 10.3390/pharmaceutics13111773.
  • [50] M. Prithwiraj, C. Wendy. 2013. Cosmetic Use of Water-Redispersible Powders. United States Patent: US8545821B2.
  • [51] B. R. Bhandari, T. Howes. 1999. “Implications of Glass Transition for the Drying and Stability of Dried Foods.” Journal of Food Engineering 40(1–2): 71–79. DOI: 10.1016/S0260-8774(99)00039-4.
  • [52] M. Umiński. 2023. „Organiczne i organiczno-nieorganiczne polimery core- -shell jako wartościowe surowce do wodorozcieńczalnych wyrobów antykorozyjnych”. Ochrona przed Korozją 66(9): 295–297. DOI: 10.15199/40.2023.9.3.
  • [53] K. Landfester. 2005. “Designing Particles – Miniemulsion Technology and Its Application in Functional Coating Systems.” European Coatings Journal 12: 20–25.
  • [54] Ch. Simon. 2007. “Designer Packaging – Nanocapsules Can Provide Controlled Release Systems for Coatings.” European Coatings Journal 2: 32–37.
  • [55] R. Teijido, L. Ruiz-Rubio, A. Gallardo Echaide, J. L. Vilas-Vilela, S. Lanceros- -Mendez, Q. Zhang. 2022. “State of the Art and Current Trends on Layered Inorganic-Polymer Nanocomposite Coatings for Anticorrosion and Multi-Functional Applications.” Progress in Organic Coatings 163: 106684. DOI: 10.1016/j.porgcoat.2021.106684.
  • [56] J. Hu, Y. Zhu, J. Hang, Z. Zhang, Y. Ma, H. Huang, Q. Yu, J. Wei. 2021. “The Effect of Organic Core-Shell Corrosion Inhibitors on Corrosion Performance of the Reinforcement in Simulated Concrete Pore Solution.” Construction and Building Materials 267: 121011. DOI: 10.1016/j.conbuildmat.2020.121011.
  • [57] W. J. Li, M. M. Aung, M. Rayung, L. H. Ngee, M. L. W. Fui. 2023. “Bio-Based Acrylated Epoxidized Jatropha Oil Incorporated with Graphene Nanoplatelets in the Assessment of Corrosion Resistance Coating.” Progress in Organic Coatings 175: 107349. DOI: 10.1016/j.porgcoat.2022.107349.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-86d02294-0a46-4bf3-98f3-564a9515dea9
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.