PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The design and optimization of the mixing process for Udimet 720LI nickel alloy manufacturing from elemental powders

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The objective of the study was to design an efficient production route for the U720LI nickel alloy using elemental powders as initial materials. The powder mixing process was carried out using a double-cone mixer and an Attritor mill, respectively. A device proper for effective mixing and mechanical alloying of powder particles was selected, and the most favorable parameters for the powder mixing process necessary for the production of the alloy were developed. The analysis of the results showed that significantly higher efficiency in mixing the powders necessary for producing the U720LI alloy was achieved using the Attritor mill. In further tests, the most favorable operating parameters of this device were determined by mixing materials at different rotational speeds. The results demonstrated that the most effective method of powder bonding among the tested variants was mixing in the Attritor mill at the identified high rotational speeds. A highly densified product with a homogeneous microstructure and free of external and internal defects was obtained, suitable for use both as a finished product and as high-quality feedstock for hot metal forming processing.
Twórcy
  • Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, al. Adama Mickiewicza 30, Krakow, Poland
  • Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, al. Adama Mickiewicza 30, Krakow, Poland
  • Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, al. Adama Mickiewicza 30, Krakow, Poland
  • Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, al. Adama Mickiewicza 30, Krakow, Poland
autor
  • Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, al. Adama Mickiewicza 30, Krakow, Poland
  • Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, al. Adama Mickiewicza 30, Krakow, Poland
  • Faculty of Materials Science and Ceramics, AGH University of Krakow, al. Adama Mickiewicza 30, Krakow, Poland
  • Institute of Lightweight Engineering and Polymer Technology (ILK), Technische Universität Dresden, Holbeinstr. 3, 01307 Dresden, Germany
autor
  • Institute of Lightweight Engineering and Polymer Technology (ILK), Technische Universität Dresden, Holbeinstr. 3, 01307 Dresden, Germany
autor
  • Institute of Metal Forming, Technische Universität Bergakademie Freiberg, Bernhard von Cotta Strasse 4, 09599 Freiberg, Germany
Bibliografia
  • 1. Wenga T., Gwenzi W., Jamro I.A., Ma W. High-temperature corrosion-resistant alloy for waste-to-energy plants: Alloy designing, fabrication, and possible corrosion-resistance mechanism. Heliyon, 2024, 10, 9, e30177. https://doi.org/10.1016/j.heliyon.2024.e30177.
  • 2. Shen J., Sun W., Xie L. et al. Achieving well-balanced mechanical properties and oxidation resistance of an oxide dispersion strengthened nickel-based alloy via in-situ solid-state reaction. Ceram. Int. 2024, 50, 13, 22514–22523. https://doi.org/10.1016/j.ceramint.2024.03.353.
  • 3. Xu J., Yuan H., Investigation of damage mechanisms in thermomechanical fatigue of nickel-based single-crystal alloys. Eng. Fract. Mech. 2024, 297, 109871. https://doi.org/10.1016/j.engfracmech.2024.109871.
  • 4. Tian N., Zhao G., Shi Z. et al. High-temperature creep behaviour and deformation mechanism of a high-concentration Re/Ru single-crystal nickel-based alloy. J. Mater. Res. Technol. 2024, 29, 1350–1358. https://doi.org/10.1016/j.jmrt.2024.01.131.
  • 5. Wang S., He J., Li W. et al. Microstructure analysis and cracking mechanism of aero-engine hot-end component K4169 superalloy based on in-situ EBSD test. J. Alloys Compd. 2023, 960, 70781. https://doi.org/10.1016/j.jallcom.2023.170781.
  • 6. Anand Kumar S., Rajkumar V. et al. Single crystal metal deposition using laser additive manufacturing technology for repair of aero-engine components. Mater. Today Proc. 2021, 45, 6, 5395–5399. https://doi.org/10.1016/j.matpr.2021.02.083.
  • 7. Lambrecht M. et al. Temperature dependence of high-temperature corrosion on nickel-based alloy in molten carbonates for concentrated solar power applications. Corros. Sci. 2023, 220, 111262. https://doi.org/10.1016/j.corsci.2023.111262.
  • 8. Nei J., Wang M. Hydrogen storage alloy development for wide operating temperature nickel-metal hydride battery applications. Int. J. Hydrogen Energy 2024, 49, 19–38. https://doi.org/10.1016/j.ijhydene.2023.09.087.
  • 9. Ashwin Prabhu G. et al. Heat treatment and analysis of nickel super alloy for gas turbine applications. Mater. Today Proc. 2021, 39, 4, 1417–1421. https://doi.org/10.1016/j.matpr.2020.05.098.
  • 10. Pimenov D. Y. et al. A comprehensive review of machinability of difficult-to-machine alloys with advanced lubricating and cooling techniques. Tribol. Int. 2024, 196, 109677. https://doi.org/10.1016/j.triboint.2024.109677.
  • 11. Darolia R. Development of strong, oxidation and corrosion resistant nickel-based superalloys: critical review of challenges, progress and prospects. Int. Mater. Rev. 2018, 64, 6, 355–380. https://doi.org/10.1080/09506608.2018.1516713.
  • 12. Meshram P., Abhilash, Pandey B. D. Advanced Review on Extraction of Nickel from Primary and Secondary Sources. Miner. Process. Extr. Metall. Rev. 2018, 40, 3, 157–193. https://doi.org/10.1080/08827508.2018.1514300.
  • 13. Ganji D.K., Rajyalakshmi G. Influence of alloying compositions on the properties of nickel-based superalloys: A review. Recent Advances in Mechanical Engineering, 2020, 537–555. https://doi.org/10.1007/978-981-15-1071-7_44.
  • 14. Wei W., Samuelsson P.B. et al. Energy consumption and greenhouse gas emissions of nickel products. Energies 2020, 13, 5664. https://doi.org/10.3390/en13215664.
  • 15. Yang L., Ren X., et al. Status and development of powder metallurgy nickel-based disk superalloys. Int. J. Mater. Res. 2019, 110, 10, 901–910. https://doi.org/10.3139/146.111820.
  • 16. Tian X., Wu J., Lu Z. et al. Effect of powder size segregation on the mechanical properties of hot isostatic pressing Inconel 718 alloys. J. Mater. Res. Technol. 2022, 21, 84–96. https://doi.org/10.1016/j.jmrt.2022.09.009.
  • 17. Ye L., Liu F., et al. Investigation on the microstructure and mechanical properties of ni-based superalloy with scandium. Metals 2023, 3, 3. https://doi.org/10.3390/met13030611.
  • 18. Sreenu B., Sarkar R., Satheesh Kumar S.S., et al. Microstructure and mechanical behaviour of an advanced powder metallurgy nickel base superalloy processed through hot isostatic pressing route for aerospace applications. Mater. Sci. Eng. A 2020, 797, 140254. https://doi.org/10.1016/j.msea.2020.140254.
  • 19. Liu F., Chen J., Dong J., Zhang M., Yao Z. The hot deformation behaviors of coarse, fine and mixed grain for Udimet 720Li superalloy. Mater. Sci. Eng. A 2016, 651, 102–115. https://doi.org/10.1016/j.msea.2015.10.099.
  • 20. Kumar D., Idapalapati S., Wei W. Microstructural Response and Strain Hardening in Deep Cold Rolled Nickel-based Superalloy for Aerospace Application. Procedia CIRP 2018, 71, 374–379. https://doi.org/10.1016/j.procir.2018.05.044.
  • 21. Aba-Perea P.E., Pirling T. et al. Determination of the high temperature elastic properties and diffraction elastic constants of Ni-base superalloys. Mater. Des. 2016, 89, 856–863. https://doi.org/10.1016/j.matdes.2015.09.152.
  • 22. Xie B.C., Ning Y.Q., Zhou C. Deformation behavior and microstructure evolution of two typical structures in Udimet 720Li ingot. Procedia Eng. 2017, 207, 1093–1098. https://doi.org/10.1016/j.proeng.2017.10.1136.
  • 23. Wan Z., Hu L., Sun Y., Wang T., Li Z. Hot deformation behavior and processing workability of a Ni-based alloy. J. Alloys Compd. 2018, 769, 367–375. https://doi.org/10.1016/j.jallcom.2018.08.010.
  • 24. Fan H., Jiang H., Dong J., Yao Z., Zhang M. An optimization method of upsetting process for homogenized, nickel-based superalloy Udimet 720Li ingot considering both cracking and recrystallization. J. Mater. Process. Technol. 2019, 269, 52–64. https://doi.org/10.1016/j.jmatprotec.2019.01.013.
  • 25. Clement C., Panuganti S., Warren P. H. et al. Comparing structure-property evolution for PM-HIP and forged alloy 625 irradiated with neutrons to 1 dpa. Mater. Sci. Eng. A 2022, 857, 144058. https://doi.org/10.1016/j.msea.2022.144058.
  • 26. Suryanarayana C. Mechanical alloying: a critical review. Mater. Res. Lett. 2022, 10, 10, 619–647. https://doi.org/10.1080/21663831.2022.2075243.
  • 27. Zyguła K., Lypchanskyi O., Cichocki K., et al. Achieving high density and controlled microstructure by predicting hot deformation behavior of low-cost powder metallurgy Ti-5553 alloy. J. Mater. Res. Technol. 33, 2024, 8403–8424. https://doi.org/10.1016/j.jmrt.2024.11.180.
  • 28. Zyguła K., Lypchanskyi O., Łukaszek-Sołek A. et al. A Comprehensive Study on Hot Deformation Behavior of the Metastable β Titanium Alloy Prepared by Blended Elemental Powder Metallurgy Approach. Metall. Mater. Trans. A 2024 55, 933–954. https://doi.org/10.1007/s11661-024-07297-9.
  • 29. Niu B., Liu Q., et al. Influence of powder ball milling pretreatment on microstructure and properties of Mo-W-Cu refractory functional alloys sintered in a normal-pressure hydrogen atmosphere. Powder Technol. 2024, 438, 119625. https://doi.org/10.1016/j.powtec.2024.119625.
  • 30. Zhuang Z., Li Z. et al. The influence of ball milling conditions on the powder characteristics and sintering densification of MoCu alloy. Int. J. Refract. Met. Hard Mater 2024, 125, 106914. https://doi.org/10.1016/j.ijrmhm.2024.106914.
  • 31. Dymek S., Lorent A., Wróbel M., Dollar A. Mechanical alloying and microstructure of a Nb–20% V–15% Al alloy. Mater. Charact. 47, 5, 2001, 375–381. https://doi.org/10.1016/S1044-5803(02)00184-5.
  • 32. Kamil M.P., Sandyaning D., Wismogroho A.S., et al. Investigation of a Ni-38Mo binary alloy fabrication by mechanical alloying and spark plasma sintering. Mater. Lett. 2023, vol. 333, 133595. https://doi.org/10.1016/j.matlet.2022.133595.
  • 33. Shi J., Lin Z., Liang Y., et al. Mechanical alloying of L21 phase Ni–Ti–Al alloy with high hardness: Influence of multiple process control agents. Mater. Chem. Phys. 2020, 256, 123728. https://doi.org/10.1016/j.matchemphys.2020.123728.
  • 34. Rajath Hegde M. M., Pradeep N. B., et al. Synthesis and characterization of multi-walled carbon nanotube-reinforced Ti–Mg alloy prepared by mechanical alloying and microwave sintering. J. Mater. Res. Technol. 2024, 31, 1236–1249. https://doi.org/10.1016/j.jmrt.2024.06.120.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-86cb8142-dd6c-4de4-97b6-05dbdc5e4b80
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.