PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Short-Term Effects of Controlled Heathland Burning on Macro- and Microelements Accumulation in Calluna vulgaris

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to protect, improve the condition and renew the heathland, foresters recommend controlled burning aimed at eliminating competing species, removing dead shoots, and stimulating Calluna vulgaris to grow. The aim of the research was to assess the impact of heath burning on the accumulation of nutrients in the shoots and roots of C. vulgaris. The results of our research indicate that the fire did not cause statistically significant changes in active acidity and exchangeable acidity in the surface layers of the soil compared to the control area. The heathland soils were nutrient-poor, with phosphorus being the most deficient element. The acidic pH of soils (pH<5.0) limited the bioavailability of macronutrients to plants. Spring burning of the heathland caused statistically significant differences in the content of N, P, K, Mg, Ca and Mn in the surface layer (A), N, P, K, Cu and Fe in the B layer and P, Mg, Cu and Fe in the C layer of the soil compared to the control surface. The macronutrient content in live shoots and roots was very low, except for calcium. The high content of Ca resulted from the functioning of C. vulgaris under stress conditions related to phosphorus deficiency in the soil and aging of the heath. In the short-term assessment, controlled burning of the heathland caused statistically significant differences in the content of N, P, K, Mg, Zn, Cu and Mn in shoots (p<0.01) and Mn in roots (p<0.05). The fire significantly (p<0.01) changed the values of the ratios between important nutrients (N/P, K/Mg and Fe/Mn) in the shoots of C. vulgaris compared to the control area.
Słowa kluczowe
Rocznik
Strony
340--351
Opis fizyczny
Bibliogr. 41 poz., rys., tab.
Twórcy
  • Department of Environmental Chemistry and Toxicology, Institute of Geography, Pomeranian University in Słupsk, ul. Arciszewskiego 22b, 76−200 Słupsk, Poland
  • Department of Environmental Chemistry and Toxicology, Institute of Geography, Pomeranian University in Słupsk, ul. Arciszewskiego 22b, 76−200 Słupsk, Poland
Bibliografia
  • 1. Abney R.B., Sanderman J., Johnson D., Fogel M.L., Berhe A.A. 2017. Post-wildfire erosion in Mountainous Terrain Leads to rapid and major redistribution of soil organic carbon. Frontiers of Earth Science, 5, 99. https://doi.org/10.3389/feart.2017.00099
  • 2. Barker S.A., Power J.N.B., Bell C.D.L., Orme C.G. 2004. Effects of habitat management on heathland response to atmospheric nitrogen deposition. Biological Conservation, 120, 41–52. https://doi. org/10.1016/j.biocon.2004.01.024
  • 3. Bednarek R., Dziadowiec H., Pokojska U., Prusinkiewicz Z. 2005. Badania ekologiczno- gleboznawcze. Wyd. Nauk. PWN, Warszawa. (in Polish)
  • 4. Burg J. Van den 1990. Foliar analysis for determination of tree nutrient status – a compilation of literature data. 2. Literature 1985-1989. ”De Dorschkamp”, Institute for Forestry and Urban Ecology. Wageningen, The Netherlands, Rapport 591.
  • 5. Calvo L., Alonso I., Marcos E., De Luis E. 2007. Effects of cutting and nitrogen deposition on biodiversity in Cantabrian heathlands. Applied Vegetation Science, 10, 43–52.
  • 6. Dlapa P., Simkovic I.Jr., Doerr S.H., Simkovic I., Kanka R., Mataix-Solera J. 2008. Application of thermal analysis to elucidate water-repellency changes in heated soils. Soil Science Society of America Journal, 72(1), 1-10. https://doi.org/10.2136/sssaj2006
  • 7. Fernández A.J. 2002. Efecto de la concentración de nitrógeno en las comunidades de callunar de alta montaña. In: Memoria de Licenciatura. Universidad de León.
  • 8. Forgeard F., Frenot Y. 1996. Effects of burning on heathland soil chemical properties: an experimental study on the effect of heating and ash deposits. Journal of Applied Ecology, 33(4), 803-811. https:// doi.org/10.2307/2404950
  • 9. Gaj R., Grzebisz W. 2003. Fosfor w roślinie. Journal of Elementology, (8)3, 5-18.
  • 10. Granged A.J.P., Zavala L.M., Jordan A., BarcenasMoreno G. 2011. Post-fire evolution of soil properties and vegetation cover in a Mediterranean heathland after experimental burning: A 3-year study. Geoderma, 164(1-2), 85-94. https://doi. org/10.1016/j.geoderma.2011.05.017
  • 11. Güsewell S. 2004. N:P ratios in terrestrial plants: variation and functional significance. New Phytologist, 164, 243–266. https://doi. org/10.1111/j.1469-8137.2004.01192.x
  • 12. Güsewell S., Koerselman W. 2002. Variation in nitrogen and phosphorus concentrations of wetland plants. Perspectives in Plant Ecology, Evolution and Systematics, 5(1), 37–61. https://doi. org/10.1078/1433-8319-0000022
  • 13. Han C.L., Sun Z.X., Shao S., Wang Q.B., Libohova Z., Owens P.R. 2021. Changes of soil organic carbon after wildfire in a boreal forest, northeast China. Agronomy, 11(10), 1925. https://doi.org/10.3390/ agronomy11101925
  • 14. Härdtle W., Niemeyer M., Niemeyer T., Assmann T., Fottner S. 2006. Can management compensate for atmospheric nutrient deposition in heathland ecosystems? Journal of Applied Ecology, 43, 759–769. https://doi.org/10.1111/j.1365-2664.2006.01195.x
  • 15. Jonczak J., Olejarski I., Janek M. 2019. Phosphorus fractionation in forest Brunic Arenosols of post− f ire areas. Sylwan, 163(5), 396−406. https://doi. org/10.26202/sylwan.2018148
  • 16. Jonczak J., Parzych A. 2015. Comparing Empetro nigri-Pinetum and Vaccinio uliginosi-Betuletum pubescentis soils in terms of organic matter stocks and ecochemical indices in the Słowiński National Park. Forest Research Papers, 76(4), 360–369. https://doi. org/10.1515/frp-2015-0035
  • 17. Kabata-Pendias A., Pendias H. 1999. Biogeochemistry of Trace Elements. Polish Scientific Publishing, Warszawa.
  • 18. Karczewska A., Kabała C. 2008. Metodyka analiz laboratoryjnych gleb i roślin. Uniwersytet Przyrodniczy we Wrocławiu, Instytut Nauk o Glebie i Ochrony Środowiska, 8, Wrocław. http://www. up.wroc.pl/~kabala
  • 19. Kistowski M. 2020. Physical and geographical regionalization of the Tuchola Forest Biosphere Reserve in the light of current research experiences. In: Mieczysław Kunz (Edit.) The role and functioning of landscape parks in biosphere reserves. Wydawnictwo Naukowe Uniwersytetu Mikołaja Kopernika (NCU Press), Toruń, 38-58.
  • 20. Kujawa-Pawlaczyk J. 2004. Suche wrzosowiska (4030). In: J Herbich (Edit.) Murawy, łąki, ziołorośla, wrzosowiska, zarośla. Poradniki ochrony siedlisk i gatunków Natura 2000, podręcznik metodyczny. MOŚ, Warszawa.
  • 21. Marcos E., Calvo L., Luis-Calabuig E. 2003. Effects of fertilisation and cutting on the chemical composition of vegetation and soils of mountain heathlands in Spain. Journal of Vegetation Science, 14, 417424. http://www.jstor.org/stable/3236519.
  • 22. Marcos E., Villalón C., Calvo L., Luis-Calabuig E. 2009. Short-term effects of experimental burning on soil nutrients in the Cantabrian heathlands. Ecol Eng, 35, 820– 828. https://doi.org/10.1016/j. ecoleng.2008.12.011
  • 23. Matuszkiewicz W. 2006. Przewodnik do oznaczania zbiorowisk roślinnych Polski. 537. PWN, Warszawa
  • 24. Mohamed A., Härdtle W., Jirjahn B., Niemeyer T., von Oheimb G. 2007. Effects of prescribed burning on plant available nutrients in dry heathland ecosystems. Plant Ecology 189, 279–289. https:// doi.org/10.1007/s11258-006-9183-7
  • 25. Niemeyer T., Niemeyer M., Mohamed A., Fottner S., Härdtle W. 2005. Impact of prescribed burning on the nutrient balance of heathlands with particular reference to nitrogen and phosphorus. Applied Vegetation Science, 8, 183-192. https://doi.org/10.1111/ j.1654-109X.2005.tb00644.x
  • 26. Ostrowska A., Porębska U. 2002. Skład chemiczny roślin, jego interpretacja i wykorzystanie w ochronie środowiska. IOŚ, Warszawa. (in Polish)
  • 27. Ostrowska A., Gawliński S., Szczubiałka Z. 1991. Metody analizy i oceny właściwości gleb i roślin. IOŚ, Warszawa. (in Polish)
  • 28. Parzych A. 2010. Nitrogen, phosphorus and carbon in forest plants in the Słowiński National Park in 2002-2005. Ochrona Środowiska i Zasobów Naturalnych, 43, 47-66.
  • 29. Parzych A., Astel A., Trojanowski J. 2008. Fluxes of biogenic substances in precipitation and througfall in woodland ecosystems of the Słowiński National Park. Archives of Environmental Protection, 34(2), 13-24.
  • 30. Pereira P., Cerdŕ A., Úbeda X., Mataix-Solera J., Arcenegui V., Zavala L. 2015. Modelling the impacts of wildfire on ash thickness in a shortterm period. Land Degradation & Development, 26, 180-192. https://doi.org/10.1002/ldr.2195
  • 31. Power S.A., Barker C.G., Allchin E.A., Ashmore M.R., Bell J.N.B. 2001. Habitat management – a tool to modify ecosystem impacts of nitrogen deposition? The Scientific World Journal, 1, 714–721. https://doi.org/10.1100/tsw.2001.379
  • 32. Rustowska B. 2022. Long-term wildfire effect on nutrient distribution in silver birch (Betula pendula Roth) biomass. Soil Science Annual, 73(2), 149943. https://doi.org/10.37501/soilsa/149943
  • 33. Scandrett E., Gimingham C.H. 1991. The effect of heather beetle Lochmaea suturalis on vegetation in a wet heath in NE Scotland. Holarctic Ecology, 14, 24-30. http://www.jstor.org/stable/3682182
  • 34. Schaller J., Tischer A., Struyf E., Bremer M., Belmonte D.U., Potthast K. 2015. Fire enhances phosphorus availability in top soils depending on binding properties. Ecology, 96(6), 1598–1606. https://doi. org/10.1890/14-1311.1
  • 35. Stevens C.J., Payne R.J., Kimberley A., Smart S.M. 2016. How will the semi-natural vegetation of the UK have changed by 2030 given likely changes in nitrogen deposition? Environmental Pollution, 208, 879889. https://doi.org/10.1016/j.envpol.2015.09.013
  • 36. Taboada A., Marcos E., Leonor Calvo L. 2016. Disruption of trophic interactions involving the heather beetle by atmospheric nitrogen deposition. Environmental Pollution, 218, 436-445. https://doi. org/10.1016/j.envpol.2016.07.023
  • 37. Tessier J.T., Raynal D.J. 2003. Use of nitrogen and phosphorus ratios in plant tissue as an indicator of nutrient limitation and nitrogen saturation. Journal Applied of Ecology, 40, 523–534. https://doi. org/10.1046/j.1365-2664.2003.00820.x
  • 38. Torres-Rojas D., Hestrin R., Solomon D., Gillespie A.W., Dynes J.J., Regier T.Z., Lehmann J. 2020. Nitrogen speciation and transformations in fire-derived organic matter. Geochimica et 352--Cosmochimica Acta, 276, 170–185. http://doi.org/10.1016/j.gca.2020.02.034
  • 39. Townsend A.R., Cleveland C.C., Asner G.P., Bustamante M.M.C. 2006. Controls over foliar N:P ratios in tropical rain forest. Ecology, 88(1), 107–118. https://doi.org/10.1890/0012-9658(2007)88[107: COFNRI]2.0.CO;2
  • 40. Valkó O., Török P., Deák B., Tóthmérész B. 2014. Review: prospects and limitations of prescribed burning as a management tool in European grasslands. Basic Applied of Ecology, 15(1), 26–33. https://doi.org/10.1016/j.baae.2013.11.002
  • 41. Zhiguo X., Baixing Y., He Y., Changchum S. 2007. Nutrient limitation and wetland botanical diversity in northeast China: can fertilization influence on species richness? Soil Science, 172(1), 86–93.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-86c51248-175a-4a28-92ec-2c5550e05dae
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.