PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Optimization of optical characteristics of In0.29Ga0.71As0.99N0.01/GaAs straddled nano-heterostructure

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Designing of a nanoscale Quantum Well (QW) heterostructure with a well thickness of ~60 Å is critical for many applications and remains a challenge. This paper has a detailed study directed towards designing of In0.29Ga0.71As0.99N0.01/GaAs straddled nanoscale-heterostructure having a single QW of thickness ~60 Å and optimization of optical and lasing characteristics such as optical and mode gain, differential gain, gain compression, anti-guiding factor, transparency wavelength, relaxation oscillation frequency (ROF), optical power and their mutual variation behavior. The outcomes of the simulation study imply that for the carrier concentration of ~2 × 10¹⁸cm⁻³ the optical gain of the nano-heterostructure is of 2100 cm⁻¹ at the wavelength is of 1.30 μm. Though the obtained gain is almost half of the gain of InGaAlAs/InP heterostructure, but from the wavelength point of view the InGaAsN/GaAs nano-heterostructure is also more desirable because the 1.30 μm wavelength is attractive due to negligible dispersion in the silica based optical fiber. Hence, the InGaAsN/GaAs nano-heterostructure can be very valuable in optical fiber based communication systems.
Słowa kluczowe
Twórcy
autor
  • Department of Physics, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
autor
  • Department of Electronics, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
autor
  • Department of Electronics, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
autor
  • Department of Physics, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
autor
  • Electronic Materials & Nanomagnetism Lab, Department of Applied Physics, Amity School of Applied Sciences, Amity University Haryana, Gurgaon, 122413, India
autor
  • Department of Pure & Applied Physics, University of Kota, Kota, Rajasthan, India
autor
  • Department of Physics, Aligarh Muslim University, Aligarh, 202002, U.P, India
autor
  • Department of Physics, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
Bibliografia
  • [1] S. Nakamura, S. Pearton, G. Fasol, The Blue Laser Diode, Springer, Berlin, 2000.
  • [2] A. Kuramata, K. Domen, R. Soejima, K. Horino, S. Kubota, T. Tanahashi, InGaN laser diode grown on 6H–SiC substrate using low-pressure metal organic vapor phase epitaxy, Jpn. J. Appl. Phys. 36 (1997) L1130.
  • [3] J.K. Sheu, F.W. Huang, C.H. Lee, M.L. Lee, Y.H. Yeh, P.C. Chen, W.C. Lai, Improved conversion efficiency of GaN-based solar cells with Mn-doped absorption layer, Appl. Phys. Lett. 103 (2013), 063906.
  • [4] F.Y. Wu, P.B. Keller, D. Kapolnek, P.S. Denbaars, U.K. Mishra, Measured microwave power performance of AlGaN/GaN MODFET, IEEE Electron. Dev. Lett. 17 (1995) 455–457.
  • [5] F.Y. Wu, P.B. Keller, P. Parikh, D. Kapolnek, S.P. Denbaars, U.K. Mishra, Bias dependent microwave performance of AlGaN/GaN MODFET’s up to 100 V, IEEE Electron. Dev. Lett. 18 (1997) 290–292.
  • [6] Z.I. Alferov, The history and future of semiconductor heterostructures, Semiconductors 32 (1998) 1.
  • [7] P.A. Alvi, Sapna Gupta, Meha Sharma, Swati Jha, F. Rahman, Computational modeling of novel InN/Al0.30In0.70N multilayer nano-heterostructures, Phys. E: Low.-Dimens. Syst. Nanostruct. 44 (2011) 49–55.
  • [8] P.A. Alvi, Strain compensated InN based superlattice, Adv. Sci. Lett. Vol. 5 (17) (2012) 101–107.
  • [9] Sapna Gupta, F. Rahman, M.J. Siddiqui, P.A. Alvi, Strain profile in III-nitride based multilayer nano-heterostructures, Phys. B: Condens. Matter 411 (2013) 40–47.
  • [10] Y.S. Park, Wide bandgap III-nitride semiconductors: opportunities for future optoelectronics, Optoelectron. Rev. 9 (2) (2001) 117–124.
  • [11] S. Yoshida, S. Misawa, S. Gonda, Improvements on the electrical and luminescent properties of reactive molecular beam epitaxially grown GaN films by using AlN-coated sapphire substrates, Appl. Phys. Lett. 42 (1983) 427.
  • [12] S. Nakamura, M. Senoh, T. Mukai, Si-Doped InGaN films grown on GaN films, Jpn. J. Appl. Phys. 32 (1993) L8–11.
  • [13] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, Y. Sugimoto, InGaN-based multi-quantum-well-structure laser diodes, Jpn. J. Appl. Phys. 35 (1996) L74.
  • [14] A. Khan, M.J.N. Kuzina, D.T. Olson, W.J. Schaff, J.W. Burm, M.S. Shur, Microwave performance of a 0.25 _m gate AlGaN/GaN heterostructure field effect transistor, Appl. Phys. Lett. 65 (1994) 1121–1122.
  • [15] X.Q. Shen, T. Ide, M. Shimizu, H. Okumura, High-quality InGaN/GaN multiple quantum wells grown on Ga-polarity GaN by plasma-assisted molecular-beam epitaxy, J. Appl. Phys. 89 (2001) 5731.
  • [16] H.M. Ng, T.D. Moustakas, K.F. Ludwig Jr, Structural and optical characterization of InGaN/GaN multiple quantum wells grown by molecular beam epitaxy, J. Vac. Sci. Technol. B 18 (2000) 1457.
  • [17] S.B. Che, Y. Ishitani, A. Yoshikawa, Fabrication and characterization of 20 periods InN/InGaN MQWs, Phys. Status Solidi C 3 (2006) 1953.
  • [18] A. Reklaitis, Terahertz-frequency InN/GaN heterostructure-barrier varactor diodes, J. Phys.: Condens. Matter 20 (2008), 384202.
  • [19] K.T. Tsen, C. Poweleit, D.K. Ferry, H. Lu, W.J. Schaff, Observation of large electron drift velocities in InN by ultrafast raman spectroscopy, Appl. Phys. Lett. 86 (2005), 222103.
  • [20] M. Razeghi, A. Rogalski, Semiconductor ultraviolet detectors, J. Appl. Phys. 79 (1996) 7433.
  • [21] D.B. Jackrel, S.R. Bank, H.B. Yuen, M.A. Wistey, J.S. Harris, A.J. Ptak Jr, S.W. Johnston, D.J. Friedman, S.R. Kurtz, Dilute nitride GaInNAs and GaInNAsSb solar cells by molecular beam epitaxy, J. Appl. Phys. 101 (2007), 114916.
  • [22] A. Härkönen, J. Rautiainen, M. Guina, J. Konttinen, P. Tuomisto, L. Orsila, M. Pessa, O. Okhotnikov, High power frequency doubled GaInNAs semiconductor disk laser emitting at 615 nm, Opt. Express 15 (2007) 3224–3229.
  • [23] S. Calvez, J. Hastie, M. Guina, O. Okhotnikov, M. Dawson, Semiconductor disk laser for the generation of visible and ultraviolet radiation, Laser Photon. Rev. 3 (2009) 407–434.
  • [24] V.-M. Korpijärvi, M. Guina, J. Puustinen, P. Tuomisto, J. Rautiainen, A. Härkönen, A. Tukiainen, O. Okhotnikov, M. Pessa, MBE grown GaInNAs-based multi-watt disk lasers, J. Cryst. Growth 311 (2009) 1868–1871.
  • [25] H. Riechert, A.Yu. Egorovtt, D. Livshitst, B. Borchert, S. Illek, InGaAsN/GaAs Heterostructures for Long-Wavelength Light-Emitting Devices”, 8th Int. Symp. “Nanostructures: Physics and Technology, St Petersburg, Russia, 2000, June 19-23.
  • [26] H.K. Nirmal, S.G. Anjum, Pyare Lal, Amit Rathi, S. Dalela, M.J. Siddiqui, P.A. Alvi, Field effective band alignment and optical gain in type-I Al0.45Ga0.55As/GaAs0.84P0.16nano-heterostructures, Optik 127 (2016) 7274–7282.
  • [27] S.L. Chuang, Physics of Optoelectronic Devices, Wiley, New York, 1995.
  • [28] H.K. Nirmal, Nisha Yadav, F. Rahman, P.A. Alvi, Optimization of high optical gain in type-II In0.70Ga0.30As/GaAs0.40Sb0.60lasing nano-heterostructure for SWIR applications, Superlattices Microstruct. 88 (2015) 154–160.
  • [29] H.K. Nirmal, Nisha Yadav, S. Dalela, Amit Rathi, M.J. Siddiqui, P.A. Alvi, Tunability of optical gain (SWIR region) in type-III n0.70Ga0.30As/GaAs0.40Sb0.60 nano-heterostructure under high pressure, Phys. E 80 (2016) 36–42.
  • [30] P.A. Alvi, Transformation of type-II InAs/AlSb nanoscale heterostructure into type-i structure and improving interband optical gain, Phys. Status Solidi B 254 (No. 5) (2017), 1600572.
  • [31] S.L. Chung, Physics of Photonic Devices, 2nd edition, Willey & Sons, Inc., 2009.
  • [32] W. Lin-Zhang, T. Wei, G. Feng, Determination of quasi fermi-level separation of semiconductor lasers from amplified spontaneous emission, Chin. Phys. Lett. Vol. 21 (No.7) (2004) 1359–1361.
  • [33] P.A. Alvi, P. Lal, R. Yadav, S. Dixit, S. Dalela, Modal gain characteristics of GRIN-InGaAlAs/InP lasing nano-heterostructures, Superlattice Microstruct. 61 (2013) 1–12.
  • [34] W.W. Chow, D. Depatie, Carrier-induced refractive-index change in quantum-well lasers, Opt. Lett. Vol. 13 (4) (1988) 303–305.
  • [35] K. Uomi, T. Mishima, N. Chinone, Ultrahigh relaxation oscillation frequency (up to 30 GHz) of highly p-doped GaAs/GaAlAs multiple quantum well lasers, Appl. Phys. Lett. 51 (1987) 78.
  • [36] B. Chen, W.Y. Jiang, A.L. Holmes Jr, Design of strain compensated InGaAs/GaAsSb type-II quantum well structures for mid-infrared photodiodes, Opt. Quant Electron. 44 (2012) 103–109.
  • [37] P.A. Alvi, Pyare Lal, S. Dalela, M.J. Siddiqui, An extensive study on simple and GRIN SCH-based In0.71Ga0.21Al0.08As/InP lasing heterostructures, Phys. Scr. 85 (2012), 035402.
  • [38] P.A. Alvi, Strain-induced non-linear optical properties of straddling-type indium gallium aluminum arsenic/indium phosphide nanoscale-heterostructures, Mater. Sci. Semicond. Process Vo. 31 (2015) 106–115.
  • [39] P. Lal, S. Dixit, F. Rahman, P.A. Alvi, Gain simulation of lasing nano-heterostructure Al0.10Ga0.90As/GaAs, Phys. E: Low-Dimens. Syst. Nanostruct. 46 (2012) 224–231.
  • [40] R. Yadav, P. Lal, F. Rahman, S. Dalela, P.A. Alvi, Investigation of material gain of In0.90Ga0.10As0.59P0.41/InP lasing nano-heterostructure, Int. J. Mod. Phys. B Vol. 28 (No. 10) (2014), 1450068.
  • [41] C.H. Pan, C.P. Lee, Design and modeling of InP-based InGaAs/GaAsSb type-II “W” type quantum wells for mid-infrared laser applications, J. Appl. Phys. 113 (2013), 043112.
  • [42] N. Yadav, G. Bhardwaj, S.G. Anjum, S. Dalela, M.J. Siddiqui, P.A. Alvi, Investigation of high optical gain in complex type-II InGaAs/InAs/GaAsSb nano-scale heterostructure for MIR applications, Appl. Opt. 56 (May (15)) (2017).
  • [43] J. Zhang, N. Tansu, Engineering of AlGaN-delta-GaN quantum-well gain media for mid- and deep-ultraviolet lasers, IEEE Photon. J. Vol. 5 (No.2) (2013), 2600209.
  • [44] C.-K. Tan, W. Sun, D. Borovac, N. Tansu, Large optical gain AlInN-delta-GaN quantum well for deep ultraviolet emitters, Sci. Rep. 6 (2016), 22983.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-86c12227-8ee3-44b5-8178-22688e3a9153
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.