PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Adaptation and application of a polarisation curve test protocol for a commercial pem electrolyser on cell and stack level

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present study aims to develop a test protocol based on the literature for electrochemical characterisation of a polymer electrolyte membrane (PEM) electrolysis commercial stack using polarisation curves. For this, a 1-kW water electrolysis test stand with integrated temperature control and measurement systems was built around the stack. Afterwards, the stack performance was characterised under different operating pressure and temperature conditions by using polarisation curves. A measurement protocol was developed based on the literature. To ensure the reproducibility of the results, two rounds of experiments were performed. The experiments were carried out at temperatures between 20 and 60 °C and pressures up to 15 bar. The results show distinct regions in the polarisation curves related to the activation and ohmic overvoltage. The effect of temperature and pressure on the performance is shown and analysed. The performance of single cells in the stack is also measured. The stack polarisation curves are compared with those in the literature, which gives an understanding of the materials used in electrodes and types of membranes.
Rocznik
Strony
395--404
Opis fizyczny
Bibliogr. 23 poz., rys., tab., wykr.
Twórcy
  • Faculty of Nature and Technology, Energy Technology, Hochschule Bremen, Neustadtswall 30, Bremen, 28199, Germany
  • Application Center for Integration of Local Energy Systems ILES, Fraunhofer Institute for Wind Energy Systems IWES, Am Seedeich 45, Bremerhaven, 27572, Germany
autor
  • Application Center for Integration of Local Energy Systems ILES, Fraunhofer Institute for Wind Energy Systems IWES, Am Seedeich 45, Bremerhaven, 27572, Germany
  • Faculty of Nature and Technology, Energy Technology, Hochschule Bremen, Neustadtswall 30, Bremen, 28199, Germany
Bibliografia
  • 1. Der Sozialdemokratischen Partei Deutschlands (SPD). BÜNDNIS 90/DIE GRÜNEN und den Freien Demokraten, Koalitionsvertrag 2021 – 2025: mehr fortschritt wagen Bündnis für Freiheit Gerecht-igkeit und Nachhaltigkeit. 2021
  • 2. European Commission. Hydrogen: The EU's hydrogen strategy explores the potential for renewable hydrogen to help decarbonise the EU in a cost-effective way [Internet]. 2022 [cited 2022 Nov 06]; Available from: https://ec.europa.eu/info/index_en
  • 3. Bertuccioli L, Chan A, Hart D, Lehner F, Madden B, Standen E. Study on development of water electrolysis in the EU: Fuel Cells and hydrogen Joint Undertaking. 2014
  • 4. Lettenmeier P. Entwicklung und Integration neuartiger Komponenten für Polymerelektrolytmembran- (PEM) Elektrolyseure [PhD Disserta-tion]. Stuttgart: Fakultät Energie-, Verfahrens- und Biotechnik der Universität Stuttgart. 2018
  • 5. Abomazid AM, El-Taweel NA, Farag HEZ. Novel Analytical Ap-proach for Parameters Identification of PEM Electrolyzer. IEEE Transactions on Industrial Informatics. Sept. 2022; 18(9): 5870-5881. doi: 10.1109/TII.2021.3132941
  • 6. Selamet ÖF, Acar MC, Mat MD, Kaplan Y. Effects of operating parameters on the performance of a high-pressure proton exchange membrane electrolyzer. Int. J. Energy Res. 2013; 37: 457–467. https://doi.org/10.1002/er.2942
  • 7. Smolinka T, Ojong E, Garche J. Hydrogen Production from Renewa-ble Energies—Electrolyzer Technologies. Electrochemical Energy Storage for Renewable Sources and Grid Balancing. Elsevier; 2015. DOI 10.1016/B978–0–444–62616–5.00008–5.
  • 8. Tjarks G. H, Stolten D, Wessling M. PEM-Elektrolyse-Systeme zur Anwendung in Power-to-Gas Anlagen. Forschungszentrum Julich GmbH, Zentralbibliothek (Schriften des Forschungszentrums Julich / Reihe Energie & Umwelt: Reihe Energie & Umwelt). 2017. – ISBN 9783958062177
  • 9. Bender G, Carmo M, Smolinka T, Gago A, Danilovic N, Mueller M, Ganci F, Fallisch A, Lettenmeier P, Friedrich K A, Ayers K, Pivovar B, Mergel J, Stolten D. Initial approaches in benchmarking and round robin testing for proton exchange membrane water electrolyzers. In-ternational Journal of Hydrogen Energy. 2019; 44: 9174–9187. https://doi.org/10.1016/j.ijhydene.2019.02.074
  • 10. European European Commission, Joint Research Centre, Tsotridis G, Pilenga A. EU harmonized protocols for testing of low temperature water electrolysis. Publications Office of the European Union; 2021. Available from: doi/10.2760/58880
  • 11. Malkow T, Pilenga A, Tsotridis G, De Marco G. EU harmonised polarisation curve test method for low-temperature water electrolysis. Publications Office of the European Union; 2018. Available from: doi:10.2760/179509
  • 12. Godula-Jopek, A. Hydrogen production By electrolysis. Weinheim: Wiley-VCH-Verl., 2015
  • 13. Mori M, Mržljak T, Drobnič B, Sekavčnik M. Integral Characteristics of Hydrogen Production in Alkaline Electrolysers. Strojniski Vestnik. Aug 2013; 59(10):585-594. doi: 10.5545/sv-jme.2012.858
  • 14. Espinosa-López M, Darras C, Poggi P, Glises R, Baucour P, Rako-tondrainibe A, Besse S, Serre-Combe P. Modelling and experimental validation of a 46 kW PEM high pressure water electrolyzer. Renew-able Energy. 2018; 119: 160–173. https://doi.org/10.1016/j.renene.2017.11.081
  • 15. Bensmann, B. Systemanalyse der Druckwasser-Elektrolyse im Kontext [PhD Dissertation]. Magdeburg: Fakultät für Verfahrens- und Systemtechnik der Otto-von-Guericke-Universität Magdeburg. 2017
  • 16. Feng Q, Yuan X, Liu G, Wei B, Zhang Z, Li H, Wang H. A review of proton exchange membrane water electrolysis on degradation mech-anisms and mitigation strategies. Journal of Power Sources. 2017; 366: 33–55. https://doi.org/10.1016/j.jpowsour.2017.09.006
  • 17. Bernt M. Analysis of Voltage Losses and Degradation Phenomena in PEM Water Electrolyzers [PhD Dissertation]. Munich: Fakultät für Chemie der Technischen Universität München. 2018
  • 18. Amores E, Rodríguez J, Oviedo, Lucas-Consuegra A. Development of an operation strategy for hydrogen production using solar PV en-ergy based on fluid dynamic aspects. Open Engineering. 2017; 7(1)1: 41–152. doi: 10.1515/eng–2017–0020
  • 19. Bitter R, Mohiuddin T, Nawrocki M. LabVIEW: Advanced program-ming techniques. Crc Press; 2006
  • 20. Stähler M, Stähler A, Scheepers F, Carmo M, Lehnert W, Stolten D. Impact of porous transport layer compression on hydrogen permea-tion. PEM water electrolysis. 2020; 45(7): 4008-4014.
  • 21. Merwe J. Characterisation of a proton exchange membrane electro-lyser using electrochemical impedance spectroscopy [PhD Disserta-tion]. Potchefstroom: School of Electrical, Electronic and Computer Engineering North-West University. 2012
  • 22. Bessarabov D, Millet P. PEM Water Electrolysis [Internet]. 1th ed. Elsevier; 2018. Chapter 2, Key Performance Indicators; [cited 2022 Sep 30]. pp. 33–60. Available from: https://www.elsevier.com/books/pem-water-electrolysis/pollet/978-0-08-102830-8
  • 23. Siracusano S, Trocino S, Briguglio N, Baglio V, Aricò AS. Electro-chemical Impedance Spectroscopy as a Diagnostic Tool in Polymer Electrolyte Membrane Electrolysis. Materials (Basel). 2018; 11(8):1368. doi: 10.3390/ma11081368
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-86bd3ed0-7119-410b-b5cc-188acc29b6f7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.