PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Finite Element Modelling of a Pair of Flexible Elements Contact Preloaded and Externally Loaded with an Arbitrary Force

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the paper, the numerical tests of the contact of a pair of flexible elements were presented. The non-linear phenomena occurring in the contact zone of two elements have been considered separately for the assembly and operational condition of the joint. The physical and mathematical models of the contact joint created using the finite element method were proposed. The contact joint is treated as a system composed of the subsystems: two of them are joined elements and the third one is the contact layer between the elements. The calculations results for the selected contact joint were given.
Twórcy
  • Faculty of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology in Szczecin, Al. Piastow 19, 70-310 Szczecin, Poland
Bibliografia
  • 1. Agatonović P. Structural integrity analysis of multi-bolted connections using the innovative beam model. Structural Integrity and Life, 11(3), 2011, 147–156.
  • 2. Argatov I. From Winkler’s foundation to Popov’s foundation. Facta Univesitatis Series Mechanical Engineering, 17(2), 2019, 181–190.
  • 3. Back N., Burdekin M. and Cowley A. Analysis of machine tool joints by the finite element method. Proc. of the 14th International Machine Tool Design and Research Conference, London, Great Britain 1974, 529–537.
  • 4. Baltazar A., Rokhlin S.I. and Pecorari C. On the relationship between ultrasonic and micromechanical properties of contacting rough surfaces. Journal of the Mechanics and Physics of Solids, 50(7), 2002, 1397–1416.
  • 5. Bucher Ch. and Ebert M. Nonlinear calculation of steel flange connections with measured imperfections (in German). Stahlbau, 71(7), 2002, 516–522.
  • 6. Buczkowski R. and Kleiber M. Elasto-plastic statistical model of strongly anisotropic rough surfaces for finite element 3D-contact analysis. Computer Methods in Applied Mechanics and Engineering, 195(37-40), 2006, 5141–5161.
  • 7. Buczkowski R. and Kleiber M. Statistical model of strongly anisotropic rough surfaces for finite element contact analysis. International Journal for Numerical Methods in Engineering, 49(9), 2000, 1169–1189.
  • 8. Bulaha N., Rudzitis J., Lungevics J., Linins O. and Krizbergs J. Research of surface roughness anisotropy. Latvian Journal of Physics and Technical Sciences, 54(2), 2017, 46–54.
  • 9. Chakherlou T.N., Razavi M.J. and Aghdam A.B. On the variation of clamping force in bolted double lap joints subjected to longitudinal loading: A numerical and experimental investigation. Strain, 48(1), 2012, 21–29.
  • 10. Chung K.F. and Ip K.H. Finite element modeling of bolted connections between cold-formed steel strips and hot rolled steel plates under static shear loading. Engineering Structures, 22(10), 2000, 1271–1284.
  • 11. Ciavarella M. and Papangelo A. The “sport” of rough contacts and the fractal paradox in wear laws. Facta Univesitatis Series Mechanical Engineering, 16(1), 2018, 65–75.
  • 12. Gerami M., Saberi H., Saberi V. and Saedi Daryan A. Cyclic behavior of bolted connections with different arrangement of bolts. Journal of Constructional Steel Research, 67(4), 2011, 690–705.
  • 13. Girão Coelho A.M. Rotation capacity of partial strength steel joints with three-dimensional finite element approach. Computers and Structures, 116, 2013, 88–97.
  • 14. Grabon W.A., Osetek M. and Mathia, T.G. Friction of threaded fasteners. Tribology International, 118, 2018, 408–420.
  • 15. Grudziński K. and Kostek R. An analysis of nonlinear normal contact microvibrations excited by a harmonic force. Nonlinear Dynamics, 50(4), 2007, 809–815.
  • 16. Grzejda R. Determination of bolt forces and normal contact pressure between elements in the system with many bolts for its assembly conditions. Advances in Science and Technology Research Journal, 13(1), 2019, 116–121.
  • 17. Grzejda R. Impact of nonlinearity of the contact layer between elements joined in a multi-bolted system on its preload. International Journal of Applied Mechanics and Engineering, 22(4), 2017, 921–930.
  • 18. Grzejda R. Study of the distribution of bolt forces in a multi-bolted system under operational normal loads. AIP Conference Proceedings, 2078, 2019, Article 020011.
  • 19. Gutowski P. and Leus M. The effect of longitudinal tangential vibrations on friction and driving forces in sliding motion. Tribology International, 55, 2012, 108–118.
  • 20. Haidar N., Obeed S. and Jawad M. Mathematical representation of bolted-joint stiffness: A new suggested model. Journal of Mechanical Science and Technology, 25(11), 2011, 2827–2834.
  • 21.Iancu F., Ding X., Cloud G.L. and Raju B.B. Three-dimensional investigation of thick singlelap bolted joints. Experimental Mechanics, 45(4), 2005, 351–358.
  • 22.Jackson R.L. An analytical solution to an Archardtype fractal rough surface contact model. Tribology Transactions, 53(4), 2010, 543–553.
  • 23.Jackson R.L. The effect of scale-dependent hardness on elasto-plastic asperity contact between rough surfaces. Tribology Transactions, 49(2), 2006, 135–150.
  • 24.Jaszak P. The elastic serrated gasket of the flange bolted joints. International Journal of Pressure Vessels and Piping, 176, 2019, Article 103954.
  • 25. Kim J.-Y., Baltazar A. and Rokhlin S.I. Ultrasonic assessment of rough surface contact between solids from elastoplastic loading-unloading hysteresis cycle. Journal of the Mechanics and Physics of Solids, 52(8), 2004, 1911–1934.
  • 26. Konowalski K. Experimental research and modeling of normal contact stiffness and contact damping of machined joint surfaces. Advances in Manufacturing Science and Technology, 33(3), 2009, 53–68.
  • 27. Konowalski K. and Grudziński K. Studing on mechanical characteristics of contact joint interfaces subjected to dynamic loads. Part II: Experimental investigations (in Polish). Archiwum Technologii Maszyn i Automatyzacji, 22(2), 2002, 115–127.
  • 28. Kostek R. An analysis of the primary and superharmonic contact resonances – Part 2. Journal of Theoretical and Applied Mechanics, 51(3), 2013, 687–696.
  • 29. Kostek R. The modelling of loading, unloading and reloading of the elastic-plastic contact of rough surfaces. Journal of Theoretical and Applied Mechanics, 50(2), 2012, 509–530.
  • 30. Kucharski S. and Starzyński G. Study of contact of rough surfaces: Modeling and experiment. Wear, 311(1-2), 2014, 167–179.
  • 31.Maggi Y.I., Gonçalves R.M., Leon R.T. and Ribeiro L.F.L. Parametric analysis of steel bolted end plate connections using finite element modelling. Journal of Constructional Steel Research, 61(5), 2005, 689–708.
  • 32. Paggi M. and He Q.-C. Evolution of the free volume between rough surfaces in contact. Wear, 336- 337, 2015, 86–95.
  • 33. Pirmoz A., Seyed Khoei A., Mohammadrezapour E. and Saedi Daryan A. Moment-rotation behavior of bolted top-seat angle connections. Journal of Constructional Steel Research, 65(4), 2009, 973–984.
  • 34. Popov V.L., Willert E. and Heβ M. Method of dimensionality reduction in contact mechanics and friction: A user’s handbook. III. Viscoelastic contacts. Facta Univesitatis Series Mechanical Engineering, 16(2), 2018, 99–113.
  • 35. Pugliese G., Tavares S.M.O., Ciulli E. and Ferreira L.A. Rough contacts between actual engineering surfaces. Part II: Contact mechanics. Wear, 264(11- 12), 2008, 1116–1128.
  • 36. Raffa M.L., Lebon F. and Vairo G. Normal and tangential stiffnesses of rough surfaces in contact via an imperfect interface model. International Journal of Solids and Structures, 87, 2016, 245–253.
  • 37. Sellgren U., Björklund S. and Andersson S. A finite element-based model of normal contact between rough surfaces. Wear, 254(11), 2003, 1180–1188.
  • 38. Shi G., Shi Y., Wang Y. and Bradford M.A. Numerical simulation of steel pretensioned bolted end-plate connections of different types and details. Engineering Structures, 30(10), 2008, 2677–2686.
  • 39. Stupkiewicz S., Lewandowski M. and Lengiewicz J. Micromechanical analysis of friction anisotropy in rough elastic contacts. International Journal of Solids and Structures, 51(23-24), 2014, 3931–3943.
  • 40. Wang G.F., Long J.M. and Feng X.Q. A self-consistent model for the elastic contact of rough surfaces. Acta Mechanica, 226(2), 2015, 285–293.
  • 41. Wang L., Liu H., Zhang J. and Zhao W. Analysis and modeling for flexible joint interfaces under micro and macro scale. Precision Engineering, 37(4), 2013, 817–824.
  • 42. Wang Y.Q., Zong L. and Shi Y.J. Bending behavior and design model of bolted flange-plate connection. Journal of Constructional Steel Research, 84, 2013, 1–16.
  • 43. Willert E., Hess M. and Popov V.L. Application of the method of dimensionality reduction to contacts under normal and torsional loading. Facta Univesitatis Series Mechanical Engineering, 13(2), 2015, 81–90.
  • 44.Witek A. Load analysis of multibolt joints concerning nonlinearity and friction (in Polish). Archiwum Technologii Maszyn i Automatyzacji, 20(2), 2000, 131–144.
  • 45. Xiao H. and Sun Y. An improved virtual material based acoustic model for contact stiffness measurement of rough interface using ultrasound technique. International Journal of Solids and Structures, 155, 2018, 240–247.
  • 46. Xiao H. and Sun Y. On the normal contact stiffness and contact resonance frequency of rough surface contact based on asperity micro-contact statistical models. European Journal of Mechanics – A/Solids, 75, 2019, 450–460.
  • 47. Yasterbov V.A., Anciaux G. and Molinari J.-F. On the accurate computation of the true contact-area in mechanical contact of random rough surfaces. Tribology International, 114, 2017, 161–171.
  • 48. Yasterbov V.A., Anciaux G. and Molinari J.-F. The role of the roughness spectral breadth in elastic contact of rough surfaces. Journal of the Mechanics and Physics of Solids, 107, 2017, 469–494.
  • 49. Yuan W., Long J., Ding Y. and Wang G. Statistical contact model of rough surfaces: The role of surface tension. International Journal of Solids and Structures, 138, 2018, 217–223.
  • 50.Zhang F., Liu J., Ding X. and Wang R. Experimental and finite element analyses of contact behaviors between non-transparent rough surfaces. Journal of the Mechanics and Physics of Solids, 126, 2019, 87–100.
  • 51. Żyliński B. and Buczkowski R. Analysis of bolt joint using the finite element method. Archive of Mechanical Engineering, 57(3), 2010, 275–292.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-86bbc9c1-e025-483b-aedd-b81ee7902fe4
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.