PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Image Retrieval Based on Text and Visual Content Using Neural Networks

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the last few years there has been a dramatic increase in the amount of visual data to be searched and retrieved. Typically, images are described by their textual content (TBIR) or by their visual features (CBIR). However, these approaches still present many problems. The hybrid approach was recently introduced, combining both characteristics to improve the benefits of using text and visual content separately. In this work we examine the use of the Self Organizing Maps for content-based image indexing and retrieval. We propose a scoring function which eliminates irrelevant images from the results and we also introduce a SOM variant (ParBSOM) that reduces training and retrieval times. The application of these techniques to the hybrid approach improved computational results.
Rocznik
Strony
21--39
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
  • Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires, Argentina
autor
  • Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires, Argentina
Bibliografia
  • 1. Böhm C., Berchtold S., Keim D., 2001, Searching in high-dimensional spaces: Index structures for improving the performance of multimedia databases, ACM Comput. Surv., 33, 3, pp. 322–373.
  • 2. Fort J. C., Cottrell M., Letremy P.. 2001, Stochastic on-line algorithm versus batch algorithm for quantization and self organizing maps, Neural Networks for Signal Processing XI: Proceedings of the 2001 IEEE Signal Processing Society Workshop, pp. 43–52.
  • 3. Gong Z., Liu Q., Zhang J., 2006, Web Image Retrieval Refinement by Visual Contents,In: J.X. Yu, M. Kitsuregawa, and H.V. Leong (Eds.), WAIM 2006, LNCS 4016, Springer-Verlag Berlin Heidelberg, pp. 143–145.
  • 4. Grubinger M., 2007, Analysis and Evaluation of Visual Information Systems Performance, PhD Thesis, School of Computer Science and Mathematics, Faculty of Health, Engineering and Science, Victoria University, Melbourne, Australia.
  • 5. Grubinger M., Clough P., Hanbury A., M¨uller H., 2008, Overview of the ImageCLEFphoto 2007 Photographic Retrieval Task, Advances in Multilingual and Multimodal Information Retrieval: 8th Workshop of the Cross-Language Evaluation Forum, CLEF 2007, Revised Selected Papers, Springer-Verlag, pp. 433–444.
  • 6. Jonsg°ard O., 2005, Improvements on colour histogram-based CBIR, PhD Thesis, Gjøvik University College, Stockholm, Norway.
  • 7. Kohonen T., 1982, Self-organized formation of topologically correct feature maps, Biological Cybernetics, 43, pp. 59–69.
  • 8. Kohonen T., 2001, Self-Organizing Maps, Springer-Verlag.
  • 9. Koikkalainen P., Oja E., 1990, Self-organizing hierarchical feature maps, IJCNN International Joint Conference on Neural Networks, 2, pp. 279–284.
  • 10. Laaksonen J., Koskela M., Laakso S., Oja E., 2000, Picsom - Content-based image retrieval with self-organizing maps, Pattern Recognition Letters, 21, 13–14, pp. 1199–1207.
  • 11. Lawrence R. D., Almasi G. S., Rushmeier H. E., 1999, A Scalable Parallel Algorithm for Self-Organizing Maps with Applications to Sparse Data Mining Problems, Data Mining and Knowledge Discovery, 3, pp. 171–195.
  • 12. Manning C., Raghavan P., Sch¨utze H., 2009, An Introduction to Information Retrieval, Cambridge University Press.
  • 13. Nist´er D., Stew´enius H., 2006, Scalable Recognition with a Vocabulary Tree, IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Washington, 2, pp. 2161–2168.
  • 14. Rauber A., Merkl D., Dittenbach M., 2002, The Growing Hierarchical SelfOrganizing Map: Exploratory Analysis of High-Dimensional Data, IEEE Transactions on Neural Networks, 13, pp. 1331–1341.
  • 15. Russell R., Sinha P.,2001, Perceptually-based Comparison of Image Similarity Metrics, MIT AIM 2001-014.
  • 16. Schaefer G., Stich M., 2004, UCID - An Uncompressed Colour Image Database, Storage and Retrieval Methods and Applications for Multimedia 2004 (Proceedings of SPIE), San Jos´e, 5307, pp. 472–480.
  • 17. Shao H., Svoboda T., van Gool L., 2003, ZuBuD — Zurich Buildings Database for Image Based Recognition, Techn. Report 260, Swiss Federal Institute of Technology, Switzerland.
  • 18. Silva B., Marques N., 2007, A Hybrid Parallel SOM Algorithm for Large Maps in Data-Mining, New Trends in Artificial Intelligence, APPIA.
  • 19. Smith J., Chang S., 1995, Single color extraction and image query,ICIP ’95: Proceedings of the 1995 International Conference on Image Processing,IEEE Computer Society, Washington, 3, 3528.
  • 20. Swain M., Ballard D., 1991, Color indexing,International Journal of Computer Vision, 7, pp. 11–32.
  • 21. Tomsich P., Rauber A., Merkl D., 2000, parSOM: Using parallelism to overcome memory latency in self-organizing neural networks, In: High Performance Computing and Networking, Society Press, pp. 61–5.
  • 22. Zhuang Y., Qing L., RynsonW., 2001, Web-Based Image Retrieval: A Hybrid Approach, Computer Graphics International, pp. 62–72.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-86b5021c-cec9-42d9-bf88-22d3927fbd6c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.