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Abstract

The paper presents the results of prediction experiments dealing with the behavior of a complex process containing significant regularity which is modeled
by a given time series. In my research I use only a small amount of the input data in order to predict future states of the aforementioned time series using a
modified GMDH containing sensitivity functions. It turns out that, for some specific processes, sensitivity functions allow us to obtain more accurate results
than the classical GMDH.

Keywords: complex systems, prediction, sensitivity functions, GMDH, partial models, Kolmogorov-Gabor equation, time series, short sample of data.

Porównanie rezultatów predykcji szeregów czasowych uzyskanych za pomocą klasycznego 
algorytmu GMDH oraz zmodyfikowanej metody GMDH z funkcjami czułości

Streszczenie

Poniższy artykuł przedstawia wyniki eksperymentów dotyczących predykcji zachowania pewnego złożonego procesu zawierającego znaczne regularności,
który  modelowany  jest  za  pomocą  szeregu  czasowego.  
W  celu  predykcji  kolejnych  wartości  szeregu  korzystam  jedynie  
z niewielkiej ilości danych wejściowych stosując zmodyfikowaną metodę GMDH (Group Method of Data Handling) zawierającą funkcje czułości. Metody
statystyczne stosowane zwykle w celu ustalenia zależności między poszczególnymi zmiennymi są całkowicie nieprzydatne w warunkach niewielkiej ilości
danych wejściowych. Trudno w takich warunkach dostrzec i zbadać regularności szeregu i zależności pomiędzy zmiennymi tego szeregu. Nawet jeśli badany
szereg  jest  szeregiem ze  ściśle  określoną  regularnością,  to  nie  mamy  pewności,  że  ilość  próbek,  na  których  ma  sposobność  pracować  badacz  jest
wystarczająca do określenia wszystkich jego cech. Proces przedstawiony za pomocą pewnego szeregu, może mieć np. składnik cykliczny, który przy małej
ilości  próbek będzie  niewidoczny.  Korzystamy więc  z  narzędzia  umożliwiającego  uchwycenie  wahań analizowanego  procesu,  jego siły  czy kierunku
wykorzystywanego  między  innymi  w  dyscyplinach  zajmujących  się  sterowaniem  procesami.  Jednym  
z takich narzędzi szacujących są właśnie funkcje czułości. Uzyskiwane rezultaty badań pokazują, że zastosowanie funkcji czułości pozwala na otrzymanie
dokładniejszych wyników predykcji niż klasyczna metoda GMDH dla pewnych szczególnych zachowań procesu. 

Słowa kluczowe:  systemy złożone, predykcja,  funkcje czułości,  GMDH, modele częściowe,  równania Kołmogorowa-Gabora, szeregi  czasowe,  próbki
niewielu danych.

1. Introduction

Dealing with the modeling of complex processes which describe the functioning and relationships of certain fragments of reality (be it
economics, sociology, biology or physics) and the prediction of their behavior one should initially evaluate the model features and the
software required for the simulation. The most popular data mining methods designed for solving some of the above-mentioned issues are
based on statistical methods. This means that a researcher with a sufficient amount of experimental data samples (usually a significant
quantity of them) first analyses statistical parameters of those processes (the parameter expectations, the statistical dispersions, etc.) [1]. It
is believed that the probability theory can work effectively only if the number of time points at which we collect the experimental data is
much greater (in practical applications, about 10 times greater) than the number of those at which the created models can be used to control
the process. Moreover, among the classical approaches to the analysis of random processes we should mention the theory of the same name
– the random process theory. This theory and those mentioned above are also based on the probability theory and various statistical methods
[2]. The regression method and the Bayesian networks can be given as an example. Unfortunately, although the regression method allows
you  to  create deterministic  models,  it  does  not  allow extracting the components which  form 
a complex process.

All  of  these approaches are  effective while  the researcher has  
a sufficient amount of data samples at his disposal. The statistical methods are completely useless if a small amount of input data exists.

In these circumstances, it is difficult to detect and examine regularities in the data series and dependencies between variables of that
series. Even if the tested series has a significant regularity, we are not sure that the number of samples with which the researcher has the
opportunity to  work is  sufficient to determine  all of  its  features.  For  example,  the  process represented  by 
a certain series may have a cyclic component which could not be found when a small number of samples is tested.
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Fig. 1. Chart of a probable prediction run of a cyclic process based upon 
a small amount of input data

Rys. 1. Wykres prawdopodobnego przebiegu predykcji cyklicznego 
procesu przy niewielkiej ilości danych wejściowych

Suppose we have a cyclic process described by a function and three samples that accurately describe the value of y variable at three time
points P0, P1 and P2  (Fig . 1). It is obvious that it is not possible to determine the periodicity of future development of the process on the
basis of only these three experiments. The dotted line illustrates how the process will probably proceed in the future by  any prognosis
method.

What is needed is a greater number of sample points. However, using a suitable strategy we can greatly reduce the quantity of necessary
time points, and obtain satisfactorily accurate results of the prognosis.

Is it possible, being in possession of a small amount of test samples, to build the model, which we will use in the control and prediction of a
complex  process?  The  model  should use  
a mathematical  tool capable of capturing variations in the process, their strength and direction. Such tools are used, among others, in the
disciplines involved in the process control or the design of efficient feedback regulators. Therefore, in order to assess the effectiveness of the
controls, we must be able to quantify the relationship between the obtained error, the process and the controller. One such estimating tool is the
sensitivity functions [3] which determine the possibility of reducing, minimizing the  interferences in a feedback system. The sensitivity
functions show us how disturbances affect the operation of a feedback system. So they can be a very promising instrument in forecasting a
time series.

2. Modification of the GMDH algorithm

The aim of the research is to create a mathematical tool that allows solving the problem of prediction for a small sample size. One of the
algorithms creating a self-organizing model (with extremely high-degree polynomials, gradually complicated polynomial models) which is
used in such fields as data mining, knowledge discovery, prediction, complex systems modeling, optimization and pattern recognition, is
the GMDH (Group Method of Data Handling) [4,5].  The method was originated in 1968 by Alexey G. Ivakhnenko. It  is perfect for
complex, unstructured systems when a researcher is interested in obtaining the high input-output relationship only. Ivakhnenko developed
the method based on the idea of Rosenblatt’s perceptrons (1958) which allowed researchers to build models of a complex system without
the  assumption  of  their  internal  working.  The  GMDH algorithm creates  even  the  hundredth-degree  polynomials  where  the  standard
regression sticks in calculations.

To predict  the behavior  of  complex systems simulated  by time  series,  we  propose  the approach of  a  modified  GMDH algorithm
containing the sensitive functions where coefficients of the Kolmogorov-Gabor polynomial (1) are calculated as in the standard GMDH.

The basic GMDH is a procedure of constructing high degree polynomials of the form:

(1)

where  m is the number of  the base function components. Although it is similar to the high-order regression-type polynomial, the way of
constructing these polynomial differs from the standard regression analysis techniques. In fact, it is more similar to the way of natural selection in
nature. It is classified as a self-organizing algorithm.

The starting point of our method is Kolmogorov-Gabor polynomial of form (2) which will calculate the future values of the time series.

          (2)

To  simplify the  notation,  we  will  use  the  characters  x,  y and  z assuming  the  time  series  to  be  three-dimensional.  Then  by the  
X(x, y) we understand the value of the x variable in the next time point presented as a partial function of only two variables (x and y) whose
previous values are defined. The idea of partial functions where the future values are calculated using a combination of any pair of variables
containing the searched one is directly borrowed from the GMDH.

Thus, the future time point of x value can be calculated finding the value of X(x, y) according to the formula (3)

         (3)

or (4)
        (4)

Similarly, we calculate the forecast of  y value as a function of  x,  y variables by searching for Y(y, x) or function of  y and z variables
calculating Y(y, z). We use Z(z, x) or Z(z, y) for variable z. So we need to find six (5) models for three variable time series.

                                       (5)



It is necessary to appoint six coefficients  for each model in order to find the values of all partial functions. So we solve the system of six
equations with six unknown values (6) for P0 – P6 time points:

 (6)

where (for a process P) describes the behavior of the process at the time point .
The contributions of every variable in the values of  x, y, z  in different sections of observation can be significantly different. We can

already notice the importance of each variable at the stage of calculating the coefficients  (the values of some of them can be close to zero).
The sensitivity functions calculated for each partial function contain necessary information which we can use to assess on influence of the
process variables at  different time points including the analysis of the current and future states of the process to be determined.  The
classical sensitive functions are used in mathematical modeling to study the efficiency of the models depending on parameters and initial
conditions. [6]

Knowing the values of the coefficients we calculate the values of the corresponding sensitivity functions for each partial function. They
can be obtained by calculating directly corresponding derivatives of polynomials (3), (4) etc., for every partial function. For partial function
X(x, y) we obtain (7).

(7)

Since the sensitivity functions are defined by the partial derivatives of each partial function of local character they have also local
character (relate to a range). So the sensitivity (insensitivity – if the values of sensitivity functions are close to zero, the partial function is
insensitive to the parameter changes) will depend on the selected time point. The same function may have high values at one range and low
at another range.

The GMDH does not allow for splitting the process into separate components but it works on the whole set of variables. The modified
method requires the separation of the components of the complex process and evaluation of the contribution of each component to the
general process state. In addition, if we want to mathematically determine how to transit one state of the process into another, we can (using
the  theory  of  complex  processes  control  terminology  [7])  apply  the  F operator  in  (for  simplicity)  
a three-dimensional metric space (x,  y,  z) as follows: 

. (8)

This operator determines what state the process will have at the next time point P i+1, if the state variables in (x, y, z) space at Pi time point are
modified with relative increases , ,  .  We call  the problem of determining the actual values of the increases  ddxi,  ddyi,  ddzi which leads the
process’s variables from (xi, yi, zi) to (xi+1, yi+1, zi+1) the inverse problem.

In the inverse problem of control of complex processes we need some explicit given values, and we also have to be careful with the
representation of uncertain data.

In our experiments we create the function corresponding to the F operator (8). The first and second order sensitivity functions (7) are the
basis for development of this function. A further strategy for the modified GMDH is as follows:
1. First, we construct the simplified partial functions with first order sensitivity functions. We obtain (9) for the partial function  X(x, y).

Solving the inverse problem we find the values of the relative increases ddx  and  ddy  at time points P0, P1, P2, ... calculating the system
of linear equations with Xi+1(x, y) and Yi+1(y, x) ((9) and (10)).

(9)

(10)

2. Then we create a detailed function using the first and second order sensitivity functions in the form of (11) and (12) and solve the inverse
problem again. It means we find the values of the relative increases ddx  and  ddy  at the time points P0, P1, P2, ... .

(11)

+

(12)
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3. Finally, we compare the results of the calculations for the simplified and detailed models and choose the model that gives better results
for further calculations.

3. The results of the experiments

The experiments with the modified GMDH containing the sensitivity functions were carried out inter alia with three variable time series
of form as described in Table 1.

(13)

Tab. 1. The data set with which the experiments were carried out using the GMDH and the modified GMDH, where values of z were obtained using (13)
Tab. 1. Zbiór danych, na którym przeprowadzono eksperymenty z wykorzystaniem zmodyfikowanej metody GMDH, gdzie wartości zmiennej z obliczano ze wzoru (13)

Time points x y z

P0 1,1 0,69 1,581141

P1 1,21 0,7935 2,211733

P2 1,331 0,912525 3,105733

P3 1,4641 1,049404 4,357086

P4 1,61051 1,206814 6,061011

P5 1,771561 1,387836 8,264303

P6 1,948717 1,596012 10,85823

P7 2,143589 1,835414 13,40973

P8 2,357948 2,110726 15,02293

P9 2,593742 2,427335 14,51877

P10 2,853117 2,791435 11,28116

We calculated the coefficients of the polynomials for each partial function at time points P0 – P6 solving the system of equations (6). We obtained
6 models (sets of coefficients), two for each of the variables. The GMDH strategy allowed us to choose the most accurate model for each pair, most
closely corresponding with the actual values of series one.

Then we calculated the values of each variable in the subsequent time point P7 using the classical GMDH (formula (3) for x variable) for later
comparison with the results of the modified method.

At the next step we found the values of the first and second order sensitivity functions at all the previously mentioned time points and we solved
the system of linear (9), (10) and nonlinear (11), (12) equations in order to find the values of each relative increase for each process variable. 

Both values of the sensitivity functions and relative increases could be interpolated, for example by the Lagrange’s method. The obtained
results were used to calculate the expected values of the variables of the process at subsequent time points. For the time series with visible
regularities the charts of corresponding sensitivity functions clearly show their regularities (Fig. 2). 

This paper presents the results of the prediction of z variable, because it appears to be more interesting due to the fact that the behavior of
this variable is affected by both x and y variable. So we dealt with the partial functions Z(z, x) and Z(z, y).

We  solved  the  system  of  equations  (6)  at  time  points  P0 –  P6.  We  obtained  the  coefficients  a0 = –0.8174,  a1 =  2.9276,  
a2 =  2.3909,  a3 =  0.0003,  a4 =  –2.6732,  a5 =  –0.5726  for  the  partial  function  Z(z,  x).  And  b0 =  –0.0843,  b1 =  2.2413,  
b2 = 0.2659, b3 = –0.0104, b4 = –2.4462, b5 = –0.2206 for  Z(z, y).

We calculated the values of the first and second order sensitivity functions at each  given time point. The sensitivity is a measure of the
effect how on the changes of one factor affects another factor. The functions  and  approximate the course of the z values very well (as they
tell us, what impact the  z value has on itself).  It  can be seen that the values of the second order sensitivity functions  and  take the
significantly different values. It is caused by differing values and signs of the coefficients a3 = 0.0003 and b3 = –0.0104. While the other
corresponding values take significant absolute values. They tell us about the quantity of the impact of the z variable changes on the x and y
values at subsequent time points.

Fig. 2. Charts of the sensitivity functions for Z(z, x) and Z(z, y) models in P0 – P7 time points
Rys. 2. Wykresy funkcji czułości dla modeli Z(z, x) oraz Z(z, y) w punktach czasowych P0 – P7.

Next, we solved the system of linear and nonlinear equations using the previously calculated coefficients in order to find the values of
relative increases for each model. Then we extrapolated the obtained values using the Lagrange’s method for 1-3 steps forward at the most.
After this, we had all necessary data to calculate the values of variables at P 7 time point (if need be at P8 and P9) using (9) and (10) with various



methods of solving nonlinear systems of equations. Then we used (3) and compared the calculations. The calculation results are given in Tab. 2.
The most precise results of the forecast are marked in green (in [7] and [3]).
Tab. 2. The table shows the calculation results obtained for various methods. The time points P7 – P9 are predicted values for various models. [2] – The actual values of z variable of 

time series, [3] – The values of z obtained using the simplify model Z(z, x) with the linear system of equation, [4] - The values of z obtained using the simplify model Z(z, y) 
with the linear system of equations, [5] - The values of z obtained using the more precise model Z(z, x) with the non-linear system of equations, [6] - The values of z obtained 
using the more precise model Z(z, y) with the non-linear system of equations, [7] - The values of z obtained using the more precise model Z(z, x) with the non-linear system of 
equations by the Newton-Ralphson method, [8] - The values of z obtained using the more precise model Z(z, y) with the non-linear system of equations by the Newton-
Ralphson method, [9] - The values of z obtained using the GMDH for Z(z, x), [10] - The values of z obtained using the GMDH for Z(z, y)

Tab. 2. Tabela przedstawia wyniki obliczeń uzyskanych za pomocą różnych metod. Punkty czasowe P7 – P9 są wynikami predykcji. [2] – rzeczywiste wartości zmiennej z szeregu 
czasowego, [3] – wartości zmiennej z uzyskane z użyciem uproszczonego modelu Z(z, x) z liniowym układem równań, [4] – wartości zmiennej z uzyskane z użyciem 
uproszczonego modelu Z(z, y) z liniowym układem równań, [5] – wartości zmiennej z uzyskane z użyciem bardziej precyzyjnego modelu Z(z, x) z nieliniowym układem 
równań, [6] – wartości zmiennej z uzyskane z użyciem bardziej precyzyjnego modelu Z(z, y) 
z nieliniowym układem równań, [7] – wartości zmiennej z uzyskane 
z użyciem bardziej precyzyjnego modelu Z(z, x) z nieliniowym układem równań rozwiązywanych metodą Newtona-Ralphsona, [8] – wartości zmiennej z uzyskane z użyciem 
bardziej precyzyjnego modelu Z(z, y) 
z nieliniowym układem równań rozwiązywanych metodą Newtona-Ralphsona, [9] – wartości zmiennej z uzyskane z użyciem GMDH dla Z(z, x), [10] – wartości zmiennej z 
uzyskane z użyciem GMDH dla Z(z, y).

[1] [2] [3] [4] [5]

P7 13,40973 13,41712 13,47693 13,43861

P8 15,02293 15,02821 15,36752 15,18853

P9 14,51877 14,25065 15,21499 14,8979

[6] [7] [8] [9] [10]

13,50794 13,41692 13,48183 13,39462 13,40137

15,60109 15,02822 15,40015 14,84608 14,91338

16,2043 14,26165 15,33063 13,43566 13,75658

Checking  the  accuracy  of  each  of  the  applied  at  time  points  
P1 – P6 models we used the least square method. It always gives us  information about the smallest sum of the squared errors. There is no
guarantee, however, that this result has any practical sense. In particular, if there is a lot of detached data, the results may have nothing to do
with the actual trend line or the relationship between the phenomena described by the variables. 

Fig. 3. The prediction results obtained using several models for three steps forward. P7 – P9– prediction.
Rys. 3. Wyniki predykcji na trzy kroki wprzód uzyskane za pomocą kilku 

różnych metod. Predykcja – P7 – P9.

The LSM values of the individual errors are as follows:

LSMzx = 1.5389·10-7; LSMzx simple = 3.4633·10-14;
LSMzy = 5.3951·10-12; LSMzx simple = 2.212·10-14;
LSMzxN-R = 9.9301·10-16; LSMGMDHzx = 2.0788·10-12;
LSMzyN-R = 1.3323·10-15; LSMGMDHzy = 5.7665·10-13.

The model with the partial function Z(z, x) where the increases were obtained by solving the nonlinear system of equations using the
Newton-Ralphson method turned out to be the most accurate: LSMzxN-R = 9.9301·10-16 (the green circle in Fig. 3). It also gave the best
results of the prediction at time point P7 and even P8  and P9. The other results were also satisfactory. There was no need to apply the
Kolmogorov-Gabor polynomial of higher than the second degree in order to continue the prediction at the next time point. So we chose the
values obtained by the model, which proved to be the most accurate in the previous step from all which were tested, and repeated the
procedure  at  new  time  points  
P2 – P8. The results are given in Tab. 3.

Tab. 3. The table shows the calculation results obtained in the second step 
of prediction. Denotations like in Tab. 2

Tab. 3. Tabela przedstawia wyniki obliczeń uzyskanych w drugim kroku 
predykcji. Oznaczenia jak w Tab. 2

[1] [2] [3] [4] [5]

P8 15,02293 15,70352 15,71403 15,32028

P9 14,51877 17,04771 17,15649 14,00139

P10 11,28116 17,83075 18,5815 4,444241
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[6] [7] [8] [9] [10]

15,49856 15,27 15,4871 15,82646 15,82556

15,36136 12,35539 14,86658 17,72176 17,68071

10,09401 -10,8398 5,245265 19,37835 19,10315

At the next step, with values taken from column [5] in Tab. 3 the prediction results are also satisfactory for our models. And at another
step the results obtained by the classical GMDH turned out to be more accurate than those of the modified method.

Further results started to deviate significantly from the actual value of the z variable.

4. Conclusions

The above analysis and [8] show that use of sensitivity functions in solving the inverse problem of control is a legitimate strategy for
prediction of the time series with significant regularities. The prediction results for a small number of the data sample proved to be very
accurate and in the vast majority of cases was even more accurate than those obtained by the classical GMDH.

The sensitivity functions show the expected trend of the values of variables as well as the relationships between them. The data carried
by them contain valuable information necessary to determine the exact variable which has a greater impact on the value of  other variables
and which of the tested models are better to estimate the future values of the time series.

The subject of our further research will be to identify the classes of functions for which the strategy of the sensitivity functions can give
more accurate results than the classical GMDH.
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