PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Isolation and characterization of naphthalene biodegrading Methylobacterium radiotolerans bacterium from the eastern coastline of the Kingdom of Saudi Arabia

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Bioremediation is based on microorganisms able to use pollutants either as a source of carbon or in co-metabolism, and is a promising strategy in cleaning the environment. Using soil contaminated with petroleum products from an industrial area in Saudi Arabia (Jubail), and after enrichment with the polycyclic aromatic hydrocarbon (PAH) naphthalene, a Methylobacterium radiotolerans strain (N7A0) was isolated that can grow in the presence of naphthalene as the sole source of carbon. M. radiotolerans is known to be resistant to gamma radiation, and this is the first documented report of a strain of this bacterium using a PAH as the sole source of carbon. The commonly reported Pseudomonas aeruginosa (strain N7B1) that biodegrades naphthalene was also identified, and gas chromatography analyses have shown that the biodegradation of naphthalene by M. radiotolerans and P. aeruginosa did follow both the salicylate and phthalate pathways.
Rocznik
Strony
25--32
Opis fizyczny
Bibliogr. 41 poz., schem., tab., wykr.
Twórcy
autor
  • King Fahd University of Petroleum and Minerals, Saudi Arabia, Department of Life Sciences
autor
  • King Fahd University of Petroleum and Minerals, Saudi Arabia, Department of Life Sciences
autor
  • King Fahd University of Petroleum and Minerals, Saudi Arabia, Department of Life Sciences
autor
  • King Fahd University of Petroleum and Minerals, Saudi Arabia, Department of Chemistry
autor
  • King Fahd University of Petroleum and Minerals, Saudi Arabia, Department of Chemistry
Bibliografia
  • [1]. Abanda-Nkpwatt, D., Musch, M., Tschiersch J., Boettner, M. & Schwab, W. (2006). Molecular interaction between Methylobacterium extorquens and seedlings: growth promotion, methanol consumption, and localization of the methanol emission site, Journal of Experimental Botany, 57, 15, pp. 4025–4032.
  • [2]. Al-Thukair, A.A. (2002). Effect of oil pollution on euendolithic cyanobacteria of the Arabian Gulf, Environmental Microbiology, 4, 2, pp. 125–129.
  • [3]. Annweiler, E., Richnow, H.H., Antranikian, G., Hebenbrock, S., Garms, C., Franke, S., Francke, W. & Michaelis, W. (2000). Naphthalene degradation and incorporation of naphthalene-derived carbon into biomass by the thermophile Bacillus thermoleovorans, Applied and Environmental Microbiology, 66, 2, pp. 518–523.
  • [4]. Anonymous. (2014)a. (http://blast.ncbi.nlm.nih.gov/Blast.cgi (30.01.2014)).
  • [5]. Anonymous. (2014)b. Naphthalene degradation – Methylobacterium radiotolerans (http://www.kegg.jp/entry/mrd00626 (20.07.2014)).
  • [6]. Anthony, C. (2011). How half a century of research was required to understand bacterial growth on C1 and C2 compounds; the story of the serine cycle and the ethylmalonyl-CoA pathway, Science Progress, 94, 2, pp. 109–137.
  • [7]. Bubinas, A., Giedraitytė, G., Kalėdienė, L., Nivinskiene, O. & Butkiene, R. (2008). Degradation of naphthalene by thermophilic bacteria via a pathway, through protocatechuic acid, Central European Journal of Biology, 3, 1, pp. 61–68.
  • [8]. Civilini, M., de Bertoldi, M. & Tell, G. (1999). Molecular characterization of Pseudomonas aeruginosa 2NR degrading naphthalene, Letters in Applied Microbiology, 29, 3, pp. 181–186.
  • [9]. Diaz, L.F., Munoz, R., Bordel, S. & Villaverde, S. (2008). Toluene biodegradation by Pseudomonas putida F1: targeting culture stability in long-term operation, Biodegradation, 19, 2, pp. 197–208.
  • [10]. Dunn, H.D., Curtin, T., O’Riordan, M.A. Coen, P., Kieran, P.M., Malone, D.M. & O’Connor, K.E. (2005). Aromatic and aliphatic hydrocarbon consumption and transformation by the styrene degrading strain Pseudomonas putida CA-3, FEMS Microbiology Letters, 249, 2, pp. 267–273.
  • [11]. Ebrahimi, P. & Plettner, E. (2013). Biodegradation of 1-allyloxy-4-propoxybenzene by selected strains of Pseudomonas putida, Biodegradation, 25, 1, pp. 31–39.
  • [12]. El-Naas, M.H., Al-Muhtaseb, S.A. & Makhlouf, S. (2009). Biodegradation of phenol by Pseudomonas putida immobilized in polyvinyl alcohol (PVA) gel, Journal of Hazardous Materials, 164, 2–3, pp. 720–725.
  • [13]. Fernandez, M., Niqui-Arroyo, J.L., Conde, S., Ramos, J.L. & Duque, E. (2012). Enhanced tolerance to naphthalene and enhanced rhizoremediation performance for Pseudomonas putida KT2440 via the NAH7 catabolic plasmid, Applied and Environmental Microbiology, 78, 15, pp. 5104–5110.
  • [14]. Gao, C., Hu, C., Ma, C., Su, F., Yu, H., Jiang, T., Dou, P., Wang, Y., Qin, T., Lv, M. & Xu, P. (2012). Genome sequence of the lactate-utilizing Pseudomonas aeruginosa strain XMG, Journal of Bacteriology, 194, 17, pp. 4751–4752.
  • [15]. Green, P.N. (1992). The genus Methylobacterium. In: The Prokaryotes (2nd edn, pp. 2342–2349), Balows, A., Trüper, H.G., Dworkin, M., Harder, W. & Schleifer, K.H. (Eds.), New York, Springer 1992.
  • [16]. Green, P.N. & Bousfield, I.J. (1983). Emendation of Methylobacterium Patt, Cole, and Hanson 1976, Methylobacterium rhodinum (Heumann 1962) comb. nov. corrig., Methylobacterium radiotolerans (It0 and Iizuka 1971) comb. nov. corrig., and Methylobacterium mesophilicum (Austin and Goodfellow 1979) comb. nov., International Journal of Systematic Bacteriology, 33, 4, pp. 875–877.
  • [17]. Haritash, A.K. & Kaushik, C.P. (2009). Biodegradation aspects of polycyclic aromatic hydrocarbons (PAHs): a review, Journal of Hazardous Materials, 169, 1–3, pp. 1–15.
  • [18]. Hoskeri, R.S., Mulla, S.I., Shouche, Y.S. & Ninnekar, H.Z. (2011). Biodegradation of 4-chlorobenzoic acid by Pseudomonas aeruginosa PA01 NC, Biodegradation, 22, 3, pp. 509–516.
  • [19]. Hu, J., Zhang, L.L., Chen, J.M. & Liu Y. (2013). Degradation of paracetamol by Pseudomonas aeruginosa strain HJ1012, Journal of Environmental Science and Health, Part A, Toxic/Hazardous Substances & Environmental Engineering, 48, 7, pp. 791–799.
  • [20]. Hwang, G., Park, S.R., Lee, C.H. Ahn, I.S., Yoon, Y.J. & Mhin, B.J. (2009). Influence of naphthalene biodegradation on the adhesion of Pseudomonas putida NCIB 9816-4 to a naphthalene-contaminated soil, Journal of Hazardous Materials, 172, 1, pp. 491–493.
  • [21]. Izmalkova, T.Y., Sazonova, O.I., Nagornih, M.O., Sokolov, S.L., Kosheleva, I.A. & Boronin, A.M. (2013). The organization of naphthalene degradation genes in Pseudomonas putida strain AK5, Research in Microbiology, 164, 3, pp. 244–253.
  • [22]. Jia, Y., Yin, H., Ye, J.S. Peng, H., He, B.Y., Qin, H.M., Zhang, N. & Qiang, J. (2008). Characteristics and pathway of naphthalene degradation by Pseudomonas sp. N7, Huan Jing Ke Xue, 29, 3, pp. 756–762. (in Chinese)
  • [23]. Johnson, E.L. & Hyman, M.R. (2006). Propane and n-butane oxidation by Pseudomonas putida GPo1, Applied and Environmental Microbiology, 72, 1, pp. 950–952.
  • [24]. Lah, K. (2011). Polycyclic Aromatic Hydrocarbons. (http://toxipedia.org/display/toxipedia/Polycyclic+Aromatic+Hydrocarbons (30.03.2014)).
  • [25]. Li, S., Li, X., Zhao, H. & Cai, B. (2011). Physiological role of the novel salicylaldehyde dehydrogenase NahV in mineralization of naphthalene by Pseudomonas putida ND6, Microbiological Research, 166, 8, pp. 643–653.
  • [26]. Lidstrom, M.E. & Chistoserdova, L. (2002). Plants in the pink: cytokinin production by methylobacterium, Journan of Bacteriology, 184, 7, pp. 1818.
  • [27]. Lin, C., Gan, L. & Chen, Z.L. (2010). Biodegradation of naphthalene by strain Bacillus fusiformis (BFN), Journal of Hazardous Materials, 182, 1–3, pp. 771–777.
  • [28]. Lin, Q. & Jianlong, W. (2010). Biodegradation characteristics of quinoline by Pseudomonas putida, Bioresource Technology, 101, 19, pp. 7683–7686.
  • [29]. Mukherjee, K., Tribedi, P., Chowdhury, A., Ray, T., Joardar, A., Giri, S. & Sil, A.K. (2011). Isolation of a Pseudomonas aeruginosa strain from soil that can degrade polyurethane diol, Biodegradation, 22, 2, pp. 377–388.
  • [30]. Mukherjee, S., Bardolui, N.K., Karim, S. Patnaik V.V., Nandy, R.K. & Bag, P.K. (2010). Isolation and characterization of a monoaromatic hydrocarbon-degrading bacterium, Pseudomonas aeruginosa from crude oil, Journal of Environmental Science and Health, Part A, Toxic/Hazardous Substances & Environmental Engineering, 45, 9, pp. 1048–1053.
  • [31]. Nzila, A. (2013). Update on the cometabolism of organic pollutants by bacteria, Environmental Pollution, 178, pp. 474–482.
  • [32]. Phale, P.S., Paliwal, V., Raju, S.C. Modak, A. & Purohit, H.J. (2013). Genome sequence of naphthalene-degrading soil bacterium Pseudomonas putida CSV86, Genome Announcements, 1, 1, pp. 234–212.
  • [33]. Seo, J.S., Keum, Y.S., Hu, Y., Lee, S.E. & Li, Q.X. (2006). Phenanthrene degradation in Arthrobacter sp. P1-1: initial 1,2-, 3,4- and 9,10-dioxygenation, and meta- and ortho-cleavages of naphthalene-1,2-diol after its formation from naphthalene-1,2-dicarboxylic acid and hydroxyl naphthoic acids, Chemosphere, 65, 11, pp. 2388–2394.
  • [34]. Seo, J.S., Keum, Y.S., & Li, Q.X. (2009). Bacterial degradation of aromatic compounds, International Journal of Environmental Research and Public Health, 6, 1, pp. 278–309.
  • [35]. Smith, C.A. & Hyman, M.R. (2004). Oxidation of methyl tert-butyl ether by alkane hydroxylase in dicyclopropylketone-induced and n-octane-grown Pseudomonas putida GPo1, Applied and Environmental Microbiology, 70, 8, pp. 4544–4550.
  • [36]. Takeo, M., Prabu, S.K., Kitamura, C., Hirai, M., Takahashi, H., Kato, D. & Negoro, S. (2006). Characterization of alkylphenol degradation gene cluster in Pseudomonas putida MT4 and evidence of oxidation of alkylphenols and alkylcatechols with medium-length alkyl chain, Journal of Bioscience and Bioengineering, 102, 4, pp. 352–361.
  • [37]. Takizawa, N., Iida, T., Sawada, T., Yamauchi, K, Wang, Y.W., Fukuda, M. & Kiyohara, H. (1999). Nucleotide sequences and characterization of genes encoding naphthalene upper pathway of Pseudomonas aeruginosa PaK1 and Pseudomonas putida OUS82, Journal of Bioscience and Bioengineering, 87, 6, pp. 721–731.
  • [38]. Tyagi, M., da Fonseca, M.M. & de Carvalho, C.C. (2011). Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes, Biodegradation, 22, 2, pp. 231–241.
  • [39]. Urakami, T., Araki, H., Suzuki, K. & Komagata, K. (1993). Further studies of the genus Methylobacterium and description of Methylobacterium aminovorans sp. nov., International Journal of Systematic Bacteriology, 43, 3, pp. 504–513.
  • [40]. You, Y., Shim, J., Cho, C.H. Ryu, M.H., Shea, P.J., Kamala-Kannan, S., Chae, J.C. & Oh, B.T. (2013). Biodegradation of BTEX mixture by Pseudomonas putida YNS1 isolated from oil-contaminated soil, Journal of Basic Microbiology, 53, 5, pp. 469–475.
  • [41]. Zhang, Z., Hou, Z., Yang, C., Ma, C., Tao, F. & Xu, P. (2011). Degradation of n-alkanes and polycyclic aromatic hydrocarbons in petroleum by a newly isolated Pseudomonas aeruginosa DQ8, Bioresources Technology, 102, 5, pp. 4111–4116.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-869c896a-1554-4f8c-b7fc-20ffcf258a69
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.