Identyfikatory
Warianty tytułu
Rozkład przestrzenny, ryzyko ekologiczne i źródła wielopierścieniowych węglowodorów aromatycznych (WWA) w wodzie i osadach dennych antropogenicznych ekosystemów limnicznych w warunkach zróżnicowanej antropopresji
Języki publikacji
Abstrakty
The research determined the concentrations of selected polycyclic aromatic hydrocarbons (PAHs) in water and sediments of Kłodnica River reservoirs and distribution depending on number of rings, ecotoxicological impact on studied ecosystems and possible sources of origin. Samples were subjected to qualitative and quantitative analysis by gas chromatography coupled with a GC-MS mass detector, using a ZB-5MS column and electron ionization. The sum of 16 PAHs in water ranged 0.111–0.301 μg/L (mean 0.200 μg/L) in Dzierżno Duże, 0.0410–0.784 μg/L (mean 0.303 μg/L) in Dzierżno Małe and 0.0920–1.52 μg/L (mean 0.596 μg/L) in Pławniowice. While in sediments respectively: 17.5–37.2 μg/g (mean 26.8 μg/g), 4.33–8.81 μg/g (6.43 μg/g) and 2.27–9.50 μg/g (5.30 μg/g). The concentration of PAHs in sediments of reservoirs, which spatial management of the catchment area accounts for over 90% of agricultural and forest land, was up to eight times lower than in sediments of the reservoir which is 69%, while built-up and transport areas are 24%. In sediments of Dzierżno Małe and Pławniowice PAHs with 5 and 6 rings dominate, while in Dzierżno Duże – 2 and 3 rings. Higher concentrations of PAHs with higher molecular weight, found in the bottom water layers, confirm the role of the sedimentation process in the transport of these compounds in reservoirs. Assessment of sediment quality, based on ecotoxicological criteria, showed that PAHs may cause toxic effects in Dzierżno Duże, while in Dzierżno Małe and Pławniowice can cause sporadic adverse effects. The likely source of PAHs in reservoirs is low emissions.
W badaniach określono stężenia wybranych wielopierścieniowych węglowodorów aromatycznych (WWA) w wodach i osadach dennych zbiorników Hydrowęzła rzeki Kłodnicy oraz określono ich rozkład w zależności od ilości pierścieni, wpływ ekotoksykologiczny na badane ekosystemy wodne oraz możliwe źródła ich pochodzenia. Próbki poddano analizie jakościowej i ilościowej metodą chromatografii gazowej sprzężonej z detektorem masowym GC-MS, wykorzystując kolumnę typu ZB-5MS i jonizację elektronową. Suma 16 WWA w wodzie wahała się w granicach 0.111–0.301 μg/L (średnio 0.200 μg/L) w Dzierżnie Dużym, 0.0410–0.784 μg/L (średnio 0.303 μg/L) w Dzierżnie Małym i 0.0920–1.52 μg/L (średnia 0.596 μg/L) w Pławniowicach. Podczas gdy w osadach wynosiła odpowiednio: 17.3–37.2 μg/g (średnio 26.8 μg/g), 4.33–8.81 μg/g (6.43 μg/g) i 2.27–9.50 μg/g (5.30 μg/g). Stężenie WWA w osadach dennych zbiorników wodnych, których zagospodarowanie przestrzenne zlewni stanowi w ponad 90% grunty rolne i leśne, było do ośmiu razy niższe niż w osadach zbiornika, którego powierzchnia ta wynosi 69%, podczas gdy tereny zabudowane i transportowe 24%. W osadach dennych zbiorników Dzierżno Małe i Pławniowice dominują WWA o 5 i 6 pierścieniach, natomiast w zbiorniku Dzierżno Duże WWA o 2 i 3 pierścieniach. Wyższe stężenia WWA o większej masie cząsteczkowej stwierdzone w przydennych warstwach wody potwierdzają rolę procesu sedymentacji w transporcie tych związków w zbiornikach. Ocena jakości osadów w oparciu o kryteria ekotoksykologiczne wykazała, że WWA mogą powodować toksyczne działanie w Dzierżnie Dużym, natomiast w Dzierżnie Małym i Pławniowicach mogą powodować sporadyczne działania niepożądane. Prawdopodobnym źródłem WWA w zbiornikach jest niska emisja.
Czasopismo
Rocznik
Tom
Strony
104--120
Opis fizyczny
Bibliogr. 49 poz., tab., wykr.
Twórcy
autor
- Institute of Environmental Engineering, Polish Academy of Sciences, Poland
autor
- Institute of Environmental Engineering, Polish Academy of Sciences, Poland
Bibliografia
- 1. Bajt, O. (2014) Aliphatic and polycyclic aromatic hydrocarbons in gulf of trieste sediments (northern Adriatic): potential impacts of maritime traffic, Bulletin of Environmental Contamination and Toxicology, 93, 3, pp. 299-305, DOI: 10.1007/s00128-014-1321-7.
- 2. Basavaiah, N., Mohite, R.D., Singare, P.U., Reddy, A.V.R., Singhal, R.K. & Blaha, U. (2017). Vertical distribution, composition profiles, sources and toxicity assessment of PAH residues in the reclaimed mudflat sediments from the adjacent Thane Creek of Mumbai, Marine Pollution Bulletin, 118, pp. 112-124, DOI: 10.1016/j.marpolbul.2017.02.049.
- 3. Bojakowska, I., Sztuczyńska, A. & Grabiec-Raczak, E. (2012). Monitoring studies of lake sediments in Poland: polycyclic aromatic hydrocarbons, Biuletyn Państwowego Instytutu Geologicznego, 450, pp, 17-26. (in Polish)
- 4. Cao, Z.G., Liu, J.L., Luan, Y., Li, Y.L, Ma, M.Y., Xu, J. & Han, S.L. (2010). Distribution and ecosystem risk assessment of polycyclic aromatic hydrocarbons in the Luan River, China. Ecotoxicology, 19, pp. 827-837, DOI: 10.1007/s10646-010-0464-5.
- 5. Dong, J., Xia, X., Wang, M., Lai, Y., Zhao, P., Dong, H., Zhao, Y. & Wen, J. (2015). Effect of water-sediment regulation of the Xiaolangdi Reservoir on the concentrations, bioavailability, and fluxes of PAHs in the middle and lower reaches of the Yellow River, Journal of Hydrology, 527, pp. 101-112, DOI: 10.1016/j.jhydrol.2015.04.052.
- 6. Duan, X-Y., Li, Y-X., Li, X-G. & Yin, P. (2018). Historical records and the sources of polycyclic aromatic hydrocarbons in the East China Sea, China Geology, 4, pp. 505−511, DOI: 10.31035/cg2018058.
- 7. Duodu, G., Ogogo, K., Mummullage, S., Harden, F., Goonetilleke, A. & Ayoko, G. (2017). Source apportionment and risk assessment of PAHs in Brisbane River sediment, Australia, Ecological Indicators, 73, pp. 784-799, DOI: 10.1016/j.ecolind.2016.10.038.
- 8. Fan C., Yang, T. & Kao, S. (2010). Characteristics of sedimentary polycyclic aromatic hydrocarbons (PAHs) in the subtropical Feitsui Reservoir, Taiwan, Journal of Hydrology, 391, 3-4, pp. 217-222, DOI: 10.1016/j.jhydrol.2010.07.020.
- 9. Feng, J., Xi, N., Zhang, F., Zhao, J., Hu, P. & Sun, J. (2016). Distributions and potential sources of polycyclic aromatic hydrocarbons in surface sediments from an emerging industrial city (Xinxiang), Environmental Monitoring and Assessment, 188, 1, pp. 1-14, DOI: 10.1007/s10661-015-5060-y.
- 10. Google maps (https://www.google.pl/maps/@50.376089,18.5271938,11078m/data=!3m1!1e3 (06.07.2020))
- 11. He, Y., Meng, W., Xu, J., Zhang, Y. & Guo, C. (2016). Spatial distribution and potential toxicity of polycyclic aromatic hydrocarbons in sediments from Liaohe River Basin, China, Environmental Monitoring and Assessment, 188:193, pp. 1-10, DOI 10.1007/s10661-016-5201-y.
- 12. Jiang, B., Zheng, H.L., Huang, G.Q., Ding, H., Li, X.G., Suo, H.T. & Li, R. (2001). Characterization and distribution of Polycyclic aromatic hydrocarbon in sediments of Haihe River, Tianjin, China, Journal of Environmental Sciences, 19, pp. 306-311, DOI: 10.1016/S1001-0742(07)60050-3.
- 13. Kalinowski, R. & Załęska-Radziwiłł, M. (2009). Determining the quality standards of sediments on the basis of the ecotoxicological studies, Ochrona Środowiska i Zasobów Naturalnych, 40, 549-560. (in Polish)
- 14. Kanzari, F., Asia, L., Syakti, A.D., Piram, A., Malleret, L., Mille, G. & Doumenq, P. (2015). Distribution and risk assessment of hydrocarbons (aliphatic and PAHs), polychlorinated biphenyls (PCBs), and pesticides in surface sediments from an agricultural river (durance) and an industrialized urban lagoon (Berre lagoon), France, Environmental Monitoring and Assessment, 187, 9, pp. 591, DOI: 10.1007/s10661-015-4823-9.
- 15. Kong, S., Ding, X., Bai, Z., Han, B., Chen, L., Shi, J. & Li, Z. (2010). A seasonal study of polycyclic aromatic hydrocarbons in PM2.5 and PM2.5-10 in five typical cities of Liaoning Province, Journal of Hazardous Materials, 183, pp. 70-80, DOI: 10.1016/j.jhazmat.2010.06.107.
- 16. Konieczka, P. & Namieśnik, J. (2010). Estimating uncertainty in analytical procedures based on chromatographic techniques, Journal of Chromatography A, 1217, pp. 882-891. DOI: 10.1016/j.chroma.2009.03.078.
- 17. Kostecki, M. & Czaplicka, M. (2001). Polycyclic aromatic hydrocarbons as part of contamination of sediments Gliwice Canal, Archives of Environmental Protection, 3, 27, pp. 119-135. (in Polish)
- 18. Kostecki, M., Czaplicka, M. & Węglarz, A. (2000). Organic compounds (BTEXs, PAHs) in the bottom sediments of dam-reservoir Dzierżno Duże (Upper Silesia), Archives of Environmental Protection, 26, 4, pp. 95-108. (in Polish)
- 19. Kostecki, M. & Kowalski, E. (2019). Polycyclic Aromatic Hydrocarbons in Bottom Sediments of Selected Anthropogenic Reservoirs in Terms of Catchment Area Development, Water Air & Soil Pollution, 230:292, DOI: 10.1007/s11270-019-4331-6.
- 20. Lawal, A.T. (2017). Polycyclic aromatic hydrocarbons. A review, Cogent Environmental Science, 3:1, 1339841, DOI: 10.1080/23311843.2017.1339841.
- 21. Liu, Y., Beckingham, B., Ruegner, H., Li, Z., Ma, L., Schwientek, M., Xie, H., Zhao, J. & Grathwohl, P. (2013). Comparison of sedimentary PAHs in the rivers of ammer (Germany) and liangtan (China): differences between early-and newly-industrialized countries, Environmental Science and Technology, 47, 2, pp. 701-709, DOI: 10.1021/es3031566.
- 22. Liu, X., Chen, Z., Xia, C., Wu, J. & Ding, Y. (2020). Characteristics, distribution, source and ecological risk of polycyclic aromatic hydrocarbons (PAHs) in sediments along the Yangtze River Estuary Deepwater Channel, Marine Pollution Bulletin, 150, pp. 110765, DOI: 10.1016/j.marpolbul.2019.110765.
- 23. Liu, F., Liu, J., Chen, Q., Wang, B. & Cao, Z. (2012). Pollution characteristics, ecological risk and sources of polycyclic aromatic hydrocarbons (PAHs) in surface sediment from Tuhai-Majia River system, China, Procedia Environmental Sciences, 13, pp. 1301-1314, DOI: 10.1016/j.proenv.2012.01.123.
- 24. Macdonald, D.D., Ingersoll, C.G. & Berger, T.A. (2000). Development and evaluation of consensus-based sediment quality guidelines for freshwater ecosystems, Archives of Environmental Contamination and Toxicology, 39, 1, pp. 20−31, DOI: 10.1007/s002440010075.
- 25. Moslen, M., Miebaka, C.A. & Boisa, N. (2019). Bioaccumulation of Polycyclic Aromatic Hydrocarbon (PAH) in a bivalve (Arca senilis - blood cockles) and health risk assessment, Toxicology Reports, 6, pp. 990-997, DOI: 10.1016/j.toxrep.2019.09.006.
- 26. Mwanamoki, P., Devarajan, N., Thevenon, F., Birane, N., Felippe de Alencastro, L., Grandjean, D., Mpiana, P., Prabakar, K., Mubedi, J., Kabele, C. Wildi, W. & Poté, J. (2014). Trace metals and persistent organic pollutants in sediments from river-reservoir systems in Democratic Republic of Congo (DRC): Spatial distribution and potential ecotoxicological effects, Chemosphere, 111, pp. 485-492, DOI: 10.1016/j.chemosphere.2014.04.083.
- 27. Nagy, A.S., Szabó, J. & Vass, I. (2014). Occurrence and distribution of polycyclic aromatic hydrocarbons in surface water and sediments of the Danube River and its tributaries. Hungary, Journal of Environmental Science and Health Part A Toxic/Hazardous Substances & Environmental Engineering, 49, 10, pp. 1134-41, DOI: 10.1080/10934529.2014.897155.
- 28. Nekhavhambe, T.J., van Ree, T. & Fatoki, O.S. (2014). Determination and distribution of polycyclic aromatic hydrocarbons in rivers, surface runoff, and sediments in and around Thohoyandou, Limpopo Province, South Africa, Water SA, 40, pp. 415-424, DOI: 10.4314/wsa.v40i3.4.
- 29. Nocoń, W., Kostecki, M. & Kozłowski, J. (2006). Hydrochemical characteristic of the Klodnica River, Ochrona Środowiska, 28, 3, pp. 39-44. (in Polish)
- 30. Pohl, A., Kostecki, M., Jureczko, I., Czaplicka, M. & Łozowski, B. (2018). Polycyclic aromatic hydrocarbons in water and bottom sediments of a shallow, lowland dammed reservoir (on the example of the reservoir Blachownia, South Poland), Archives of Environmental Protection, 44, 1 pp. 10-23, DOI: 10.24425/118177.
- 31. Olenycz, M., Sokołowski, A., Niewińska, A., Wołowicz, M., Namieśnik, J., Hummel, H. & Jansen, J. (2015). Comparison of PCBs and PAHs levels in European coastal waters using mussels from the Mytilus edulis complex as biomonitors, Oceanologia, 57, pp. 196-211, DOI: 10.1016/j.oceano.2014.12.001.
- 32. Qiu, Y.W., Zhang, G., Liu, G.Q., Guo, L.L., Li, X.D. & Wai, O. (2009). Polycyclic aromatic hydrocarbons (PAHs) in the water column and sediment core of Deep Bay, South China, Estuarine, Coastal and Shelf Science, 83, 1, pp. 60-66, DOI: 10.1016/j.ecss.2009.03.018.
- 33. Reclamation program for dam reservoirs in Kłodnica River catchment area, 2016.
- 34. Regulation of the Minister of Maritime Economy and Inland Navigation of 11 October 2019 on the classification of ecological status, ecological potential and chemical status and the method of classifying the status of surface water bodies, as well as environmental quality standards for priority substances.
- 35. Rocha, M.J., Dores-Sousa, J.L., Cruzeiro, C. & Rocha, E. (2017). PAHs in water and surface sediments from Douro River estuary and Porto Atlantic coast (Portugal) - impacts on human health, Environmental Monitoring and Assessment, 189, 8, pp. 425, DOI: 10.1007/s10661-017-6137-6.
- 36. Sánez, J., Froehner, S. & Falcão, F. (2013). Use of biomarkers indices in a sediment core to evaluate potential pollution sources in a subtropical reservoir in Brazil, Geochemistry, 73, 4, pp. 555-563, DOI: 10.1016/j.chemer.2013.07.005.
- 37. Sanil Kumar, K.S., Nair, S.M., Salas, P.M., Prashob, P. & Ratheesh Kumar, C.S. (2016). Aliphatic and polycyclic aromatic hydrocarbon contamination in surface sediment of the Chitrapuzha River, South West India Chemistry and Ecology, 32, 2, pp. 117-135, DOI: org/10.1080/02757540.
- 38. Savinov, V., Savinova, T., Matishov, G., Dahle, S. & Næs, K. (2003). Polycyclic aromatic hydrocarbons (PAHs) and organochlorines (OCs) in bottom sediments of the Guba Pechenga, Barents Sea, Russia, Science of The Total Environment, 303, 1-3, pp. 39-56, DOI: 10.1016/S0048-9697(02)00483-7.
- 39. Smal, H., Ligęza, S., Wójcikowska-Kapusta, A., Baran, S., Urban, D., Obroślak, R. & Pawłowski, A. (2015). Spatial distribution and risk assessment of heavy metals in bottom sediments of two small dam reservoirs (south-east Poland), Archives of Environmental Protection, 41, 4, pp. 67-80, DOI: 10.1515/aep-2015-0041.
- 40. Solberg, T., Tiefenthaler Jr., J., O’Brien, G., Behnke, H.F., Poulson, H.D., Ela, J.P. & Willett, S.D. (2003). Consensus-Based Sediment Quality Guidelines. Recommendations for Use & Application Interim Guidance. Developed by the Contaminated Sediment Standing Team, Wisconsin Department of Natural Resources.
- 41. Tarkowska-Kukuryk, M. (2013). Effect of phosphorous loadings on macrophytes structure and trophic state of dam reservoir on a small lowland river (eastern Poland), Archives of Environmental Protection, 39, 3, pp. 33-46, DOI: 10.2478/aep-2013-0029.
- 42. Tobiszewski, M. & Namieśnik, J. (2012). PAH diagnostic ratios for the identification of pollution emission sources, Environmental Pollution, 162, pp. 110-119, DOI: 10.1016/j.envpol.2011.10.025.
- 43. Tolosa, I., Mesa-Albernas, M. & Alonso-Hernandez, C.M. (2009). Inputs and sources of hydrocarbons in sediments from Cienfuegos bay, Cuba, Marine Pollution Bulletin, 58, pp. 1624-1634, DOI: 10.1016/j.marpolbul.2009.07.006.
- 44. United States Environmental Protection Agency (1984). EPA/5401/1-86/013.
- 45. Wikipedia (https://pl.wikipedia.org/wiki/Drama_(rzeka) (03.07.2020))
- 46. Wolska, L., Mechlińska, A., Rogowska, J. & Namieśnik, J. (2012). Sources and fate of PAHs and PCBs in the marine environment, pp. 1172-1189, DOI: DOI: 10.1080/10643389.2011.556546.
- 47. Yang, R, Xi, T., Li, A., Yang, H., Turner, S., Wu, G. & Jing, C. (2016). Sedimentary records of polycyclic aromatic hydrocarbons (PAHs) in remote lakes across the Tibetan Plateau, Environmental Pollution, 214, pp. 1-7, DOI: 10.1016/j.envpol.2016.03.068.
- 48. Yuan, H., Liu, E., Zhang, E., Luo, W., Chen, L., Wang, C. & Lin, Q. (2017). Historical records and sources of polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs) in sediment from a representative plateau lake, China, Chemosphere, 173, pp. 78-88, DOI: 10.1016/j.chemosphere.2017.01.047.
- 49. Zhang, F., Zhang, R., Guan, M., Shu, Y., Shen, L., Chen, X., Li, T. (2016). Polycyclic aromatic hydrocarbons (PAHs) and Pb isotopic ratios in a sediment core from Shilianghe Reservoir, eastern China: Implying pollution sources, Applied Geochemistry, 66, pp. 140-148, DOI: 10.1016/j.apgeochem.2015.12.010.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-869841f4-8e01-4f62-9012-9800116c8afd