PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of rock properties on ROP modeling using statistical and intelligent methods: a case study of an oil well in southwest of Iran

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Badanie wpływu właściwości skał na prędkość wiercenia przy zastosowaniu metod statystycznych i inteligentnych: studium przypadku: szyb naftowy w południowo-zachodniej części Iranu
Języki publikacji
EN
Abstrakty
EN
Rate of penetration (ROP) is one of the key indicators of drilling operation performance. The estimation of ROP in drilling engineering is very important in terms of more accurate assessment of drilling time which affects operation costs. Hence, estimation of a ROP model using operational and environmental parameters is crucial. For this purpose, firstly physical and mechanical properties of rock were derived from well logs. Correlation between the pair data were determined to find influential parameters on ROP. A new ROP model has been developed in one of the Azadegan oil field wells in southwest of Iran. The model has been simulated using Multiple Nonlinear Regression (MNR) and Artificial Neural Network (ANN). By adding the rock properties, the estimation of the models were precisely improved. The results of simulation using MNR and ANN methods showed correlation coefficients of 0.62 and 0.87, respectively. It was concluded that the performance of ANN model in ROP prediction is fairly better than MNR method.
PL
Prędkość wiercenia jest jednym z podstawowych parametrów charakteryzujących tempo prac wiertniczych. Oszacowanie prędkości wiercenia jest zagadnieniem kluczowym dla inżynierów wiertnictwa, gdyż pozwala na dokładne określenie czasu trwania prac, a co za tym idzie także kosztów operacyjnych. Szacowanie prędkości wiercenia odbywa się na podstawie modelu uwzględniającego parametry pracy oraz parametry środowiskowe. Pierwszy krok obejmuje pozyskanie danych o fizycznych i mechanicznych właściwościach skał na podstawie profilowania geofizycznego otworu. Zastosowano korelację odpowiednich par danych dla pokreślenie wpływu głównych czynników warunkujących prędkość wiercenia. Nowy model obliczania prędkości wiercenia opracowany został w okręgu naftowym Azadegan w południowo-zachodniej części Iranu. Symulacje prowadzono w oparciu o metodę wielokrotnej regresji nieliniowej a także przy wykorzystaniu sztucznych sieci neuronowych. Poprzez dodanie danych o właściwościach skał, model został znacznie udoskonalony. Wyniki symulacji prowadzonych w oparciu o powyższe metody wykazały współczynniki korelacji na poziomie 0.62 i 0.87. Stwierdzono, że metoda wykorzystująca sztuczne sieci neuronowe daje dokładniejsze szacunki prędkości wiercenia niż podejście bazujące wyłącznie na metodzie obliczania regresji nieliniowej
Rocznik
Strony
131--144
Opis fizyczny
Bibliogr. 55 poz., rys., tab., wykr.
Twórcy
  • Department of Mining, Petroleum and Geophysics, Shahrood University, Shahrood, Iran
  • Department of Mining, Petroleum and Geophysics, Shahrood University, Shahrood, Iran
  • Department of Mining, Petroleum and Geophysics, Shahrood University, Shahrood, Iran
autor
  • Department of Mining, Petroleum and Geophysics, Shahrood University, Shahrood, Iran
autor
  • Expert, Petroleum Engineering & Development Company(Pedec), Tehran, Iran
Bibliografia
  • [1] Afsari M., Ghafoori M.R., Roostaeian M., Haghshenas A., Iranian N., Company O., 2009. Mechanical Earth Model (MEM): An Effective Tool for Borehole Stability Analysis and Managed Pressure Drilling (Case Study). In SPE Middle East Oil and Gas Show and Conference, p. 1-12.
  • [2] Akbari B., Miska S., Yu M., Ozbayoglu M., 2014. Experimental Investigations of the Effect of the Pore Pressure on the MSE and Drilling Strength of a PDC Bit. In SPE Western North American and Rocky Mountain Joint Meeting, p. 1-9.
  • [3] Al-muhailan M., Hussain I., Maliekkal H., Ghoneim O., Nair P., 2013. New HTHP Cutter Technology Coupled with FEA-Based Bit Selection System Improves ROP by 60% in Abrasive Zubair Formation. In International Petroleum Technology Conference, p. 1-11.
  • [4] Ameen M.S., Smart B.G.D., Somerville J.M., Hammilton S., Naji N., 2009. Predicting rock mechanical properties of carbonates from wireline logs (A case study: Arab-D reservoir, Ghawar field, Saudi Arabia). Marine and Petroleum Geology, 26(4), 430-444.
  • [5] Andrews R., Hareland G., Nygaard R., Engler T., 2007. Methods of Using Logs to Quantify Drillability. In Rocky Mountain Oil & Gas Technology Symposium.
  • [6] Babatunde Y., Butt S., Molgaard J., Arvani F., 2011. Investigation of the Effects of Vibration Frequency on Rotary Drilling Penetration Rate Using Diamond Drag Bit. In 45th U.S. Rock Mechanics / Geomechanics Symposium.
  • [7] Basarir H., Tutluoglu L., Karpuz C., 2014. Penetration rate prediction for diamond bit drilling by adaptive neuro-fuzzy inference system and multiple regressions. Engineering Geology, 173, 1-9.
  • [8] Bataee M., Kamyab M., Ashena R., 2010. Investigation of Various ROP Models and Optimization of Drilling Parameters for PDC and Roller-cone Bits in Shadegan Oil Field. In International Oil and Gas Conference and Exhibition, p. 1-10.
  • [9] Bataee M., Mohseni S., 2011. Application of Artificial Intelligent System in ROP Optimization a Case Study in Shadegan Oil Field. In SPE middle east unconventional gas conference and exhibition, p. 1-10.
  • [10] Bates D.M., Watts D.G., 2007. Nonlinear Regression Analysis and Its Applications. p. 392. Wiley-Interscience; 1 edition.
  • [11] Bielstein J.,, 1950. Factors Affecting the Rate of Penetration of Rock Bits. In Drilling and Production Practice, p. 61-78.
  • [12] Bontempi G., Bersini H., Birattari M., 2001. The local paradigm for modeling and control: from neuro-fuzzy to lazy learning. Fuzzy Sets and Systems, 121(1), 59-72.
  • [13] Bourgoyne A.T., Young F.S., 1974. A Multiple Regression Approach to Optimal Drilling and Abnormal Pressure Detection, 4, 371-384.
  • [14] Bourgoyne A.T., Millheim K.K., Chenevert M.E., Jr., F.S.Y., 1986. Applied Drilling Engineering. p. 502.
  • [15] Chang C., Zoback M.D., Khaksar A., 2006. Empirical relations between rock strength and physical properties in sedimentary rocks. Journal of Petroleum Science and Engineering, 51(3-4), 223-237.
  • [16] Choi S., 1978. Introductory Statistics in Science. New Jersey: Prentice-Hall Inc.
  • [17] Collins P.M., 2002. Geomechanics and wellbore stability design of an offshore horizontal well, North Sea. In SPE International Thermal Operations and Heavy Oil Symposium and International Horizontal Well Technology Conference, p. 1-14.
  • [18] Cunningham R.A., Eenink J.G., 1959. Laboratory Study of Effect of Overburden, Formation and Mud Column Pressures on Drilling Rate of Permeable Formations. Society of Petroleum Engineers, 217, 9-17.
  • [19] Duklet C.P., Bates T.R., 1980. An Empirical Correlation To Predict Diamond Bit Drilling Rates. In SPE Annual Technical Conference and Exhibition, p. 1-7.
  • [20] Eaton B.A., 1975. The Equation for Geopressure Prediction from Well Logs. In Fall Meeting of the Society of Petroleum Engineers of AIME, p. 1-11.
  • [21] Esmaeili A., Elahifar B., Fruhwirth R.K., Thonhauser T.D.E., Engineering D., 2012. ROP Modeling Using Neural Network and Drill String Vibration Data. In SPE Kuwait International Petroleum Conference and Exhibition, p. 1-13.
  • [22] Famini G.R., Penski C.A., Wilson L., 1992. Using theoretical descriptors in quantitative structure activity relationships: Some physicochemical properties. Journal of Physical Organic Chemistry, 395-408.
  • [23] Fernandez-Ibanez F., Felipe Cardona M.H., Araujo E.M.P., Brudy M., Alvarellos J., Ordonez L.Y., Mateus D.C., 2010. 3D Geomechanical Modeling for the Apiay and Suria Oil Fields (Llanos Orientales Basin, Colombia): Insights on the Stability of Reservoir-Bounding Faults. In SPE Latin American and Caribbean Petroleum Engineering Conference. p. 1-14.
  • [24] Fjaer E., Holt R.M., Horsrud P., Raaen A.M., Risnes R., 2008. Petroleum Related Rock Mechanics. 2nd Editio., p. 1-490.
  • [25] Gholami R., Moradzadeh A., Rasouli V., Hanachi J., 2014. Practical application of failure criteria in determining safe mud weight windows in drilling operations. Journal of Rock Mechanics and Geotechnical Engineering, 6(1), 13-25.
  • [26] Gstalder S., Raynal J., 1966. Measurement of Some Mechanical Properties of Rocks and Their Relationship to Rock Drillability. Journal of Petroleum Technology, 991-996.
  • [27] Hareland G., Wu A., Rashidi B., 2010. A Drilling Rate Model for Roller Cone Bits and Its Application. In International Oil and Gas Conference and Exhibition in China, p. 8-10.
  • [28] Haykin S.S., 1999. Neural Networks: A Comprehensive Foundation. p. 842. Prentice Hall.
  • [29]Hoover E.R., Middleton J.N., 1981. Laboratory Evaluation of PDC Drill Bits Under High-Speed and High-Wear Conditions. Journal of Petroleum Technology, 2316-2321.
  • [30] Howarth D.F., 1987. The Effect of Pre-existing Microcavities on Mechanical Rock Performance in Sedimentary and Crystalline Rocks. International Journal of Rock Mechanics and Mining Sciences & Geomechanics, 20(4), 223-233.
  • [31] Jadbavi H., 2012. Mudlogging Data Check and Accept Sheet. p. 187.
  • [32] Kahraman S., Balcõ C., Yazõcõ S., Bilgin N., 2000. Prediction of the penetration rate of rotary blast hole drills using a new drillability index. International Journal of Rock Mechanics and Mining Sciences, 37, 729-743.
  • [33] Li R., Chengjin Y., Yunzhang Z., Zhiping L., 2012. An Integrated Approach to Improve Drilling Performance and Save Cost in North Azadegan Field. In IADC/SPE Asia Pacific Drilling Technology Conference and Exhibition. p. 1-8.
  • [34] Ma H., 2011. Formation drillability prediction based on multi-source information fusion. Journal of Petroleum Science and Engineering, 78(2), 438-446.
  • [35] Nauroy J.-F., 2011. Geomechanics Applied to the Petroleum Industry. p. 198.
  • [36] Onyia E.C., 1988. Relationships Between Formation Strength, Drilling Strength, and Electric Log Properties. In SPE Annual Technical Conference and Exhibition, p. 1-14.
  • [37] Paiaman A.M., Al-askari M.K.G., Salmani B., Masihi M., 2009. Effect of Drilling Fluid Properties on Rate of Penetration. Nafta Scientific Journal, 60, 129-134.
  • [38] Pallant J., 2010. A Step by Step Guide to Data Analysis Using SPSS. p. 330. Open University Press.
  • [39] Prasad U., 2009. Drillability of a Rock in Terms of its Physico-Mechanical and Micro-Structural Properties. In 43rd U.S. Rock Mechanics Symposium & 4th U.S. – Canada Rock Mechanics Symposium.
  • [40] Qiu K., Cheng N., Ke X., Liu Y., Wang L., Chen Y., Xiong P., 2013. 3D Reservoir Geomechanics Workflow and Its Application to a Tight Gas Reservoir in Western China. In International Petroleum Technology Conference, p. 1-11.
  • [41] Rahimzadeh H., Mostofi M., Hashemi A., Salahshoor K., 2010. Comparison of the Penetration Rate Models Using Field Data for One of the Gas Fields in Persian Gulf Area. In CPS/SPE Internatioanl Oil& Gas Conference and Exhbition. p. 1-11.
  • [42] Rodgers J.L., Nicewander W.A., 1988. Thirteen Ways to Look at the Correlation Coefficient. The American Statistician, 42, 59-66.
  • [43] Shirkavand F., Hareland G., 2009. Rock Mechanical Modelling for a Underbalanced Drilling Rate of Penetration Prediction. In 43rd U.S. Rock Mechanics Symposium & 4th U.S. – Canada Rock Mechanics Symposium.
  • [44] Sivanandam S.N., Deepa S.N., 2006. Introduction to Neural Networks Using Matlab 6.0. p. 656. Tata McGraw-Hill Education.
  • [45] Somerton W.H., 1969. Further Studies of the to Relation of Physical Properties of Rock to Rock Drillability. In Drilling and Rock Mechanics Symposium, p. 87-96.
  • [46] Spaar J.R., Ledgerwood L.W., Christensen H., Goodman H., Graff R.L., Moo T.J., 1995. Formation Compressive Strength Estimates for Predicting Drillability and PDC Bit Selection. SPE/IADC Drilling Conference, 569-578.
  • [47] Tiab D., Donaldson E.C., 2011. Petrophysics-Theory and Practice of Measuring Reservoir Rock and Fluid Transport Properties, p. 1-976.
  • [48] Tiryaki B., 2008. Application of artificial neural networks for predicting the cuttability of rocks by drag tools. Tunnelling and Underground Space Technology, 23(3), 273-280.
  • [49] Villalobos M.E.T., Frydman M., Casalis D.J., Ramirez A., C., M.F.L., Villalba E., 2005. 3D Analysis for Wellbore Stability: Reducing Drilling Risks in Oriente Basin, Ecuador. In SPE Latin American and Caribbean Petroleum Engineering Conference, p. 1-13.
  • [50] Walker B.H., Black A.D., Klauber W.P., Little T., Khodaverdian M., 1986. Roller-Bit Penetration Rate Response as a Function of Rock Properties and Well Depth. In SPE Annual Technical Conference and Exhibition, p. 1-12.
  • [51] Warren T.M., Smith M., 1985. Bottomhole Stress Factors Affecting Drilling Rate at Depth. Journal of Petroleum Technology, 1523-1533.
  • [52] Winters W.J., Warren T.M., Onyia E.C., 1987. Roller Bit Model With Rock Ductility and Cone Offset. In SPE Annual Technical Conference and Exhibition, p. 1-12.
  • [53] Yasar E., Erdogan Y., 2004. Correlating sound velocity with the density, compressive strength and Young’s modulus of carbonate rocks. International Journal of Rock Mechanics and Mining Sciences, 41(5), 871-875.
  • [54] Zhang J., 2011. Pore pressure prediction from well logs: Methods, modifications, and new approaches. Earth-Science Reviews, 108(1-2), 50-63.
  • [55] Zoback M.D., 2007. Reservoir Geomechanics, p. 1-443.
Uwagi
PL
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-86980dee-5380-4248-b214-1e432f0ab8e7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.