PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Selected applications of cyclodextrin polymers

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The review consists of two parts. In the first part selected properties of CD polymers which are useful for their application are presented; their network and gelation properties, along with their adsorption capacities and stabilities, are described here. In the second part, various applications of CD polymers of commercial interest, as well those which are promising in the medicinal field, are shown.
Słowa kluczowe
Twórcy
autor
  • Institute of Chemistry, Environmental Protection, and Biotechnology Jan Dlugosz University of Czestochowa 42-200 Czestochowa, Armii Krajowej 13, Poland
  • Department of Metal Extraction and Recirculation Czestochowa University of Technology 42-200 Czestochowa, Armii Krajowej 19, Poland
autor
  • Department of Engineering and Work Safety, Opole University of Technology 45-273 Opole, Sosnkowskiego 31, Poland
autor
  • Institute of Chemistry, Environmental Protection, and Biotechnology Jan Dlugosz University of Czestochowa 42-200 Czestochowa, Armii Krajowej 13, Poland
Bibliografia
  • [1] Dodziuk H. ed., 2006. Cyclodextrins and Their Complexes: Chemistry, Analytical Methods, Applications, Wiley-VCH, Weinheim.
  • [2] Szejtli J., 1988. Cyclodextrin Technology; Kluwer Acad. Publ.: Dordrecht.
  • [3] Astray G., Mejuto J.C., Morales J., Rial-Otero R., Simal-Gandara J. 2010. Factors controlling flavors binding constants to cyclodextrins and their applications in foods. Food Res. Int. 43, 1212-1218.
  • [4] Marques H.M.C., 2010. A review on cyclodextrin encapsulation of essential oils and volatiles. Flavour Frag. J. 25, 313-326.
  • [5] da Porto C., Decorti D., Kikic I., 2009. Flavour compounds of Lavandula angustifolia L. to use in food manufacturing: Comparison of three different extraction methods. Food Chem. 112, 1072-1078.
  • [6] Decock G., Landy D., Surpateanu G., Fourmentin S., 2008. Study of the retention of aroma components by cyclodextrins by static headspace gas chromatography. J. Incl. Phenom. Macrocycl. Chem. 62, 297-302.
  • [7] van de Manakker F., Vermonden T., van Nostrum C.F., Hennink W.E., 2009. Cyclodextrin-Based Polymeric Materials: Synthesis, Properties, and Pharmaceutical/Biomedical Applications. Biomacromolecules 10, 3157-3175.
  • [8] Guo X.H., Wang J., Li L., Chen Q.C., Zheng L., Pham D.T., 2010. Tunable polymeric hydrogels assembled by competitive complexation between cyclodextrin dimers and adamantyl substituted poly(acrylate)s. AIChE J. 56,3021- -3024.
  • [9] Li L., Guo X.H, Fu L., Prudhomme R.K., Lincoln S.F., 2008. Complexation Behavior of α-, β-, and γ-Cyclodextrin in Modulating and Constructing Polymer Networks. Langmuir 24, 8290-8296.
  • [10] Kozlowski C., Sliwa W., 2013. Cyclodextrin polymers - recent applications. In: Wiley: Encyclopedia of Polymer Science and Technology, John Wiley and Sons.
  • [11] Harada A., Takashima Y., 2012. Cyclodextrin based supramolecular polymers in A. Harada, ed., Supramolecular Polymer Chemistry, Wiley-VCH Verlag GmbH & Co. KGaA, 29-50.
  • [12] Kozlowski C.A., Sliwa W., Nowik - Zajac A., 2010. Application of cyclodextrin derivatives and polymers in membrane separation. In: Cyclodextrins: Chemistry and Physics, Ed., J. Hu, Transworld Research Network, Kerala, India, 141-161.
  • [13] Kozlowski C.A., Sliwa W., 2010. Use of Cyclodextrin Polymers in Separation of Organic Species, Nova Science Publishers, New York.
  • [14] Wang N., Ding L., 2012. Erratum to: Cyclodextrin-based hyperbranched polymers by acyclic diene metathesis polymerization of an ABn monomer: molecule design, synthesis, and characterization. J. Polym. Res. 19, 9863, DOI: 10.1007/s10965-012-9863-z.
  • [15] Sakai F., Chen G., Jiang M., 2012. A new story of cyclodextrin as a bulky pendent group causing uncommon behaviour to random copolymers in solution. Polym. Chem. 3, 954-961.
  • [16] Hashidzume A., Harada A., 2011. Recognition of polymer side chains by cyclodextrins. Polym. Chem. 2, 2146–2154.
  • [17] Volet G., Amiel C., 2012. Polyoxazoline adsorption on nanoparticles mediated by host-guest interaction. Colloids Surfaces B. 91, 269-273.
  • [18] Zhao C., Guan X., Liu X., Zhang H., J. 2012. Synthesis of molecularly imprinted polymer using attapulgite as matrix by ultrasonic irradiation for simultaneous online solid phase extraction and high performance liquid chromatography determination of four estrogens. Chromatogr. A. 1229, 72-78.
  • [19] Albuzat T., Keil M., Ellis J., Alexander C., Wenz G., 2012. Transfection of luciferase DNA into various cells by cationic cyclodextrin polyrotaxanes derived from ionene-11. J. Mater. Chem. 22, 8558-8565.
  • [20] Fernandez L., Machin R., Zornoza A., Velaz I., Martin C., Martinez-Oharriz M.C., 2011. Mechanism of sorption and release of a weak acid from β-cyclodextrin polymers. J. Incl. Phenom. Macrocycl. Chem. 69, 411–415.
  • [21] Moya-Ortega M.D., Messner M., Jansook P., Nielsen T.T., Wintgens V., Larsen K.L., Amiel C., Sigurdsson H.H., Loftsson T., 2011. Drug loading in cyclodextrin polymers: dexamethasone model drug. J. Incl. Phenom. Macrocycl. Chem. 69, 377-382.
  • [22] Ghosh I., Nau W.M., 2012. The strategic use of supramolecular pKa shifts to enhance the bioavailability of drugs. Adv. Drug Deliv. Rev. 64,764-783.
  • [23] Fuloep Z., Kurkov S.V., Nielsen T.T., Larsen K.L., Loftsson T., 2012. Selfassembly of cyclodextrins: Formation of cyclodextrin polymer based nanoparticles. J. Drug Deliv. Sci. Tech. 22, 215-222.
  • [24] Tabata Y., 2009. Biomaterial technology for tissue engineering applications. J. R. Soc. Interface 6, S311-S324.
  • [25] Liu T., Li X., Qian Y., Hu X., Liu S., 2012. Multifunctional pH-Disintegrable micellar nanoparticles of asymmetrically functionalized β-cyclodextrin-Based star copolymer covalently conjugated with doxorubicin and DOTA-Gd moieties. Biomaterials 33, 2521-2531.
  • [26] Sakurada K., McDonald F.M., Shimada F., 2008. Regenerative Medicine and Stem Cell Based Drug Discovery. Angew. Chem. Int. Ed. 47, 5718−5738.
  • [27] Jaggi S., Gupta U., 2012. Preconcentration of manganese using modified-β-cyclodextrin butanediol diglycidyl ether polymer as the solid phase extractant. Electron. J. Environ. Agric. Food 11, 106-117.
  • [28] Landy D., Mallard I., Ponchel A., Monflier E., Fourmentin S., 2012. Remediation technologies using cyclodextrins: an overview. Environ. Chem.Lett. 10, 225-237.
  • [29] Liu H., Cai X., Wang Y., Chen J., 2011. Adsorption mechanism-based screening of cyclodextrin polymers for adsorption and separation of pesticides from water. Water Res. 45, 3499-3511.
  • [30] Kiasat A.R., Nazari S., 2012. β-Cyclodextrin based polyurethane as eco-friendly polymeric phase transfer catalyst in nucleophilic substitution reactions of benzyl halides in water: An efficient route to synthesis of benzyl thiocyanates and acetates. Catal. Sci. Technol. 2, 1056-1058.
  • [31] Thatiparti T.R., Shoffstall A.J, von Recum H.A., 2010. Cyclodextrin-based device coatings for affinity-based release of antibiotics. Biomaterials, 31, 2335-2347.
  • [32] He J., Ding L., Deng J., Yang W., 2012. Oil-absorbent beads containing β-cyclodextrin moieties: preparation via suspension polymerization and high oil absorbency. Polym. Adv. Technol. 23, 810-816.
  • 33] Chen Q., Zhang R., Wang J., Li L., Guo X., 2012. Spherical particles of α-, β- and γ-cyclodextrin polymers and their capability for phenol removal. Mater. Lett. 79, 156-158.
  • [34] Sancey B., Trunfio G., Charles J., Badot P.-M., Crini G., 2011. Sorption onto crosslinked cyclodextrin polymers for industrial pollutants removal: an interesting environmental approach. J. Incl. Phenom. Macrocycl. Chem. 70, 315-320.
  • [35] Huang Z., Liua S., Zhanga B., Xub L., Hua X., 2012. Equilibrium and kinetics studies on the absorption of Cu(II) from the aqueous phase using a β-cyclodextrinbased adsorbent. Carbohydr. Polym. 88, 609-617.
  • [36] Kozlowski C.A., Walkowiak W., Girek T., 2008. Modified cyclodextrin polymers as selective ion carriers for Pb(II) separation across plasticized membranes. J. Membr. Sci. 310, 312-320.
  • [37] Girek T., Kozlowski C.A., Koziol J.J., Walkowiak W., Korus I., 2005. Polymerisation of β-cyclodextrin with succinic anhydride. Synthesis, characterisation, and ion flotation of transition metals. Carbohydr. Polym. 59, 211-215.
  • [38] Kozlowski C.A., Girek T., Walkowiak W., Koziol J.J., 2005. Application of hydrophobic β-cyclodextrin polymer in separation of metal ions by plasticized membranes. Sep. Purif. Technol. 46, 136-144.
  • [39] Chavan B.A., Mali K.K., Dias R.J., 2012. Formulation and evaluation of melt-in-mouth tablets of domperidone containing multicomponent inclusion complex. Int. J. Pharm. Pharm. Sci. 4, 71-75.
  • [40] E. Bilensoy, Ed., 2011. Cyclodextrins in Pharmaceutics, Cosmetics, and Biomedicine: Current and Future Industrial Applications, Hoboken: Wiley-VCH, Weinheim.
  • [41] Hymas R.V., Ho N.F.H., Higuchi W.I., 2012. Transport of a lipophilic ionizable permeant (capric acid) across a lipophilic membrane (silicone polymer membrane) from aqueous buffered solutions in the presence of hydroxypropyl-β-cyclodextrin. J. Pharm. Sci. 101, 2340-2352.
  • [42] Alabi C., Vegas A., Anderson D., 2012. Attacking the genome: emerging siRNA nanocarriers from concept to clinic. Curr. Opin. Pharmacol. 12, 427-433.
  • [43] Ciobanu A., Mallard I., Landy D., Brabie G., Nistor D., Fourmentin S., 2012. Inclusion interactions of cyclodextrins and crosslinked cyclodextrin polymers with linalool and camphor in Lavandula angustifolia essential oil. Carbohydr. Polym. 87, 1963-1970.
  • [44] Vyas A., Shailendra S., Swarnlata S., 2008. Cyclodextrin based novel drug delivery systems. J. Incl. Phenom. Macrocyclic Chem. 62, 23-42.
  • [45] Swaminathan S., Vavia P.R., Trotta F., Torne S., 2007. Formulation of betacyclodextrin based nanosponges of itraconazole. J. Incl. Phenom. Macrocyclic Chem. 57, 89-94.
  • [46] Kozlowski C.A., Girek T., Walkowiak W., Kozlowska J., 2006. The effect of β-CD polymers structure on the efficiency of copper(II) ion flotation. J. Incl. Phenom. Macrocycl. Chem. 55, 71-77.
  • [47] Trotta F., Cavalli R., 2009. Characterization and Applications of New Hyper-Cross-Linked Cyclodextrins. Compos. Interfaces 16, 39-48.
  • [48] Swaminathan S., Pastero L., Serpe L., Trotta F., Vavia P.R., Aquilano D., Trotta M., Zara G., Cavalli R., 2010. Cyclodextrin-based nanosponges encapsulating camptothecin: Physicochemical characterization, stability and cytotoxicity. Eur. J. Pharm. Biopharm. 74, 193-201.
  • [49] Allabashi R., Arkas M., Hormann G., Tsiourvas D., 2007. Removal of some organic pollutants in water employing ceramic membranes impregnated with cross-linked silylated dendritic and cyclodextrin polymers. Water Res. 41, 476-486.
  • [50] Boscolo B., Trotta F., Ghibaudi E., 2010. High catalytic performances of Pseudomonas fluorescens lipase adsorbed on a new type of cyclodextrin-based nanosponges. J. Mol. Catal. B: Enzym. 62, 155-161.
  • [51] Mele A., Castiglione F., Malvezzi L., Ganazzoli F., Raffaini G., Trotta F., Rossi B., Fontana A., Giunchi G., 2011. HR MAS NMR, powder XRD and Raman spectroscopy study of inclusion phenomena in βCD nanosponges. J. Incl. Phenom. Macrocycl. Chem. 69, 403-409.
  • [52] Castiglione F., Crupi V., Majolino D., Mele A., Panzeri W., Rossi B., Trotta F., Venuti V., 2013. Vibrational dynamics and hydrogen bond properties of β-CD nanosponges: a FTIR-ATR, Raman and solid-state NMR spectroscopic study. J. Incl. Phenom. Macrocycl. Chem. 75, 247-254.
  • [53] Rossi B., Caponi S., Castiglione F., Corezzi S., Fontana A., Giarola M., Mariotto G., Mele A., Petrillo C., Trotta F., Viliani G., 2012. Networking Properties of Cyclodextrin-Based Cross-Linked Polymers Probed by Inelastic Light-Scattering Experiments. J. Phys. Chem. B. 116, 5323-5327.
  • [54] Liu K.L., Zhang Z.X., Li J., 2011. Supramolecular hydrogels based on cyclodextrin–polymer polypseudorotaxanes: materials design and hydrogel properties. Soft Matter. 7, 11290-11297.
  • [55] Zhang Z.X., Liu K.L., Li J., 2011. Self-Assembly and Micellization of a Dual Thermoresponsive Supramolecular Pseudo-Block Copolymer. Macromolecules 44, 1182-1193.
  • [56] Zhu J. L., Liu K. L., Zhang Z., Zhang X., Li J., 2011. Amphiphilic star-block copolymers and supramolecular transformation of nanogel-like micelles to nanovesicles. Chem. Commun. 47, 12849-12851.
  • [57] Chen B., Liu K.L., Zhang Z., Ni X., Goh S.H., Li J., 2012. Supramolecular hydrogels formed by pyrene-terminated poly(ethylene glycol) star polymers through inclusion complexation of pyrene dimers with γ-cyclodextrin. Chem. Commun. 48, 5638-5640.
  • [58] Yilmaz E., Memon S., Yilmaz M. J., 2010. Removal of direct azo dyes and aromatic amines from aqueous solutions using two β-cyclodextrin-based polymers. J. Hazard. Mater. 174, 592-597.
  • [59] Zhang X.M., Peng C.S., Xu G.C., 2012. Synthesis of modified β-cyclodextrin polymers and characterization of their fuchsin adsorption. J. Incl. Phenom. Macrocycl. Chem. 72, 165-171.
  • [60] Amiel C., Layre A.-M., Wintgens V., Dalmas F., Gosselet N.-M., 2011. pH sensitive polymer nanoassemblies based on cyclodextrin polymer. J. Incl. Phenom. Macrocycl. Chem. 69, 487-490.
  • [61] Feng J.X., Su S.P., Zhu J., 2011. An intumescent flame retardant system using β-cyclodextrin as a carbon source in polylactic acid (PLA). Polym. Adv. Technol. 22, 1115-1122.
  • [62] Wang H., Li B., 2010. Synergistic effects of β-cyclodextrin containing silicone oligomer on intumescent flame retardant polypropylene system. Polym. Adv. Technol. 21, 691-697.
  • [63] Enescu D., Alongi J., Frache A., 2012. Evaluation of nonconventional additives as fire retardants on polyamide 6,6: Phosphorous-based master batch, α-zirconium dihydrogen phosphate, and β-cyclodextrin based nanosponges. J. Appl. Polym. Sci. 123, 3545-3555.
  • [64] Alongi J., Poskovic M., Frache A., Trotta F., 2010. Novel flame retardants containing cyclodextrin nanosponges and phosphorus compounds to enhance EVA combustion properties. Polym. Degrad. Stab. 95, 2093-2100.
  • [65] Alongi J., Poskovic N., Visakh P. M., Frache A., Malucelli G., 2012. Cyclodextrin nanosponges as novel green flame retardants for PP, LLDPE and PA6. Carbohydr. Polym. 88, 1387-1394.
  • [66] Ding L., Li Y., Jia D., Deng J. P., Yang W.T., 2011. β-Cyclodextrin-based oilabsorbents: Preparation, high oil absorbency and reusability. Carbohydr. Polym., 83, 1990-1996.
  • [67] Barari M., Abdollahi M., Hemmati M., 2011. Synthesis and Characterization of High Molecular Weight Polyacrylamide Nanoparticles by Inverse-emulsion Polymerization. Iranian Polymers Journal 20, 65-76.
  • [68] Zhou C., Yang W., Yu Z., Zhou W., Xia Y., Han Z., Wu Q., 2011. Synthesis and solution properties of novel comb-shaped acrylamide copolymers. Polym. Bull. 66, 407-417.
  • [69] Zou C., Zhao P., Ge J., Lei Y., Luo P., 2012. β-Cyclodextrin modified anionic and cationic acrylamide polymers for enhancing oil recovery. Carbohydr. Polym. 87, 607-613.
  • [70] Messner M., Kurkov S. V., Jansook P., Loftsson T., 2010. Self-assembled cyclodextrin aggregates and nanoparticles. Int. J. Pharm. 387, 199-208.
  • [71] Davis M.E., Zuckerman J.E., Choi C.H.J., Seligson D., Tolcher A., Alabi C.A., Yen Y., Heidel J.D., Ribas A., 2010. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 464, 1067-1070.
  • [72] Nimesh S., Gupta N., Chandra R., 2011. Strategies and advances in nanomedicine for targeted siRNA delivery. Nanomedicine 6, 729-746.
  • [73] Tan S.J., Kiatwuthinon P., Roh Y.H., Luo J.S., 2011. Engineering Nanocarriers for siRNA Delivery. Small 7, 841-856.
  • [74] Mellet C.O., Fernandez J.M.G., Kahn J.S., Benito J.M., 2011. Cyclodextrin-based gene delivery systems. Chem. Soc. Rev. 40, 1586-1608.
  • [75] Zhang J., Fan H., Levorse D.A., Crocker L.S., 2011. Interaction of Cholesterol-Conjugated Ionizable Amino Lipids with Biomembranes: Lipid Polymorphism, Structure–Activity Relationship, and Implications for siRNA Delivery. Langmuir 27, 9473-9483.
  • [76] Sahay G., Alakhova D.Y., Kabanov A.V.J., 2010. Endocytosis of nanomedicines. J. Control. Release 145, 182-195.
  • [77] Kulkarni A., Wei D., Hyun S., Thompson D.H., 2012. Development of a Low Toxicity, Effective pDNA Vector Based on Noncovalent Assembly of Bioresponsive Amino-β-cyclodextrin:Adamantane–Poly(vinyl alcohol)–Poly(ethylene glycol) Transfection Complexes. Bioconjugate Chem. 23, 933–940.
  • [78] Kulkarni A., DeFrees K., Hyun S.-H., Thompson D. H., 2012. Pendant Polymer:Amino-β-Cyclodextrin:siRNA Guest:Host Nanoparticles as Efficient Vectors for Gene Silencing. J. Am. Chem. Soc. 134, 7596-7599.
  • [79] Maheshwari R.K., Singh A.K., Gaddipati J., Srimal R.C., 2006. Multiple biological activities of curcumin: A short review. Life Sci. 78, 2081-2087.
  • [80] Silambarasi T., Latha S., Thambidurai M., Selvamani P., 2012. Formulation and evaluation of curcumin loaded magnetic nanoparticles for cancer therapy. Int. J. Pharm. Sci. Res. 3, 1393-1400.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8694b5cb-2d72-4af5-a028-5a4788420068
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.