PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Study on properties of multipole switched reluctance motor designed for multichannel operation – single channel operation analysis

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The following paper deals with the multipole design of the switched reluctance motor (SRM). The design is intended to facilitate the four-channel operation of the motor. Due to multipole design of the rotor and multichannel operation abilities, there are numerous potential configurations for powering the poles in each phase. Analysis of a selection of such configurations was carried out, including multichannel (MC) operating conditions (e.g., single-channel operation (SCO)). A mathematical model of three-phase MC SRM is also presented. The static electromagnetic torque characteristics were obtained together with the self-and mutual inductance characteristics. Selected laboratory test results are likewise presented in the paper.
Rocznik
Strony
art. no. e153428
Opis fizyczny
Bibliogr. 15 poz., rys., tab., wykr.
Twórcy
  • Faculty of Electrical and Computer Engineering, Rzeszow University of Technology, Rzeszow, Poland
autor
  • Faculty of Electrical and Computer Engineering, Rzeszow University of Technology, Rzeszow, Poland
autor
  • Faculty of Electrical and Computer Engineering, Rzeszow University of Technology, Rzeszow, Poland
  • Faculty of Electrical and Computer Engineering, Rzeszow University of Technology, Rzeszow, Poland
Bibliografia
  • [1] T.J.E. Miller, “Switched reluctance motor and their control” in Magna Physics, Oxford University Press, 1993.
  • [2] A.A. Arkadan and B.W. Kielgas, “Switched reluctance motor drive systems dynamic performance prediction under internal and external fault conditions”, IEEE Trans. Energy Conv., vol. 9, no. 1, pp. 45–52, 1994, doi: 10.1109/60.282475.
  • [3] H. Chen, G. Han, W. Yan, S. Lu, and Z. Chen, “Modeling of a Switched Reluctance Motor Under Stator Winding Fault Condition”, IEEE Trans. Applied Superconduct., vol. 26, no. 4, p. 0604106, 2016, doi: 10.1109/TASC.2016.2539678.
  • [4] Y. Hu, C. Gan, W. Cao, J. Zhang, W. Li, and S.J. Finney, “Flexible Fault-Tolerant Topology for Switched Reluctance Motor Drives”, IEEE Trans. Power Electron., vol. 31, no. 6, pp. 4654–4668, 2016, doi: 10.1109/TPEL.2015.2477165.
  • [5] M. Korkosz, P. Bogusz, J. Prokop, B. Pakla, and G. Podskarbi, “Comparative Analysis of Fault-Tolerant Dual-Channel BLDC and SR Motors”, Energies, vol. 12. no. 13, p. 2489, 2019, doi: 10.3390/en12132489.
  • [6] S.M.H. Mousavi, S.M. Mirbagheri, S.S.S.G. Sefid, and S.E.S.G. Sefid, “Simulation of a new multiphase BLDC motor drive”, 2012 IEEE International Conference on Power Electronics, Drives and Energy Systems (PEDES), doi: 10.1109/ PEDES.2012.6484304.
  • [7] A. Mohammadpour and L. Parsa, “Global Fault-Tolerant Control Technique for Multiphase Permanent-Magnet Machines”, IEEE Trans. Ind. Appl., vol. 51, no. 1, pp. 178–186, 2015, doi: 10.1109/TIA.2014.2326084.
  • [8] B. Anvari, Y. Li, and H.A. Toliyat, “Design of multiphase exterior rotor switched reluctance motor for traction applications”, 2016 IEEE 25th International Symposium on Industrial Electronics (ISIE), 2016, doi: 10.1109/ISIE.2016.7744883.
  • [9] B. Tian, G. Mirzaeva, Q.-T. An, L. Sun, and D. Semenov, “Fault-Tolerant Control of a Five-Phase Permanent Magnet Synchronous Motor for Industry Applications”, IEEE Trans. Ind. Appl., vol. 54., no. 4, 2018, doi: 10.1109/TIA.2018.2820060.
  • [10] X. Deng and B. Mecrow, “A comparison of conventional and segmental rotor 12/10 switched reluctance motors”, 2019 IEEE International Electric Machines & Drives Conference (IEMDC), 2019, doi: 10.1109/IEMDC.2019.8785221.
  • [11] W. Ding, “Comparative Study on Dual-Channel Switched Reluctance Generator Performances Under Single- and Dual-Channel Operation Modes”, IEEE Trans. Energy Conv., vol. 27, no. 3, pp. 680–688, 2012, doi: 10.1109/TEC.2012.2194497.
  • [12] W. Ding, L. Liu, J. Lou, and Y. Liu, “Comparative Studies on Mutually Coupled Dual-Channel Switched Reluctance Machines With Different Winding Connections”, IEEE Trans. Magn., vol. 49, no. 11, pp. 5574–5589, 2013, doi: 10.1109/TMAG.2013. 2271753.
  • [13] P. Bogusz., M. Korkosz, and J. Prokop, “Modelling and performance analysis of dual-channel switched reluctance motor”, Arch. Electr. Eng., vol. 64, no. 1, pp. 89–105, 2015, doi: 10.1515/ aee-2015-0009.
  • [14] Q. Chen, D. Xu, L. Xu, J. Wang, Z. Lin, and X. Zhu, “Fault-Tolerant Operation of a Novel Dual-Channel Switched Reluctance Motor Using Two 3-Phase Standard Inverters”, IEEE Trans. Applied Superconduct., vol. 28, no. 3, p. 5204205, 2018, doi: 10.1109/TASC.2018.2799838.
  • [15] ANSYS. Ansys Electronics Release 2024 R1, ANSYS Inc.: Canonsburg, PA, USA, 2024.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-86936839-8a92-4220-b551-9b8e9d2b2d47
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.