Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Let (Ztq,H)t∈[0,1]d denote a d-parameter Hermite random field of order q ≥ 1 and self-similarity parameter H = (H1,…, Hd) ∈ (1/2, 1)d. This process is H-self-similar, has stationary increments and exhibits long-range dependence. Particular examples include fractional Brownian motion (q = 1, d = 1), fractional Brownian sheet (q = 1, d ≥ 2), the Rosenblatt process (q = 2, d = 1) as well as the Rosenblatt sweet (q = 2, d ≥ 2). For any q ≥ 2, d ≥ 1 and H ∈ (1/2, 1)d we show in this paper that a proper renormalization of the quadratic variation of Zq,H converges in L2(Ω) to a standard d-parameter Rosenblatt random variable with self-similarity index Hʺ = 1 + (2H − 2)/q.
Czasopismo
Rocznik
Tom
Strony
385--401
Opis fizyczny
Bibliogr. 15 poz.
Twórcy
autor
- Université du Luxembourg, UR en Mathématiques, 6, avenue de la Fonte, L-4364 Esch-sur-Alzette, Luxembourg
Bibliografia
- [1] P. Breuer and P. Major, Central limit theorems for nonlinear functionals of Gaussian fields, J. Multivariate Anal. 13 (3) (1983), pp. 425-441.
- [2] A. Chronopoulou, C. A. Tudor, and F. G. Viens, Self-similarity parameter estimation and reproduction property for non-Gaussian Hermite processes, Commun. Stoch. Anal. 5 (1) (2011), Article 10.
- [3] R. L. Dobrushin and P. Major, Non-central limit theorems for nonlinear functionals of Gaussian fields, Z. Wahrsch. Verw. Gebiete 50 (1) (1979), pp. 27-52.
- [4] L. Giraitis and D. Surgailis, CLT and other limit theorems for functionals of Gaussian processes, Z. Wahrsch. Verw. Gebiete 70 (2) (1985), pp. 191-212.
- [5] M. Gradinaru and I. Nourdin, Milstein’s type schemes for fractional SDEs, Ann. Inst. Henri Poincaré Probab. Stat. 45 (4) (2009), pp. 1085-1098.
- [6] I. Nourdin, Asymptotic behavior of weighted quadratic and cubic variations of fractional Brownian motion, Ann. Probab. 36 (6) (2008), pp. 2159-2175.
- [7] I. Nourdin, Selected Aspects of Fractional Brownian Motion, Springer and Bocconi University Press, Milan 2012.
- [8] D. Nualart, The Malliavin Calculus and Related Topics, second edition, Springer, Berlin 2006.
- [9] M. S. Pakkanen and A. Réveillac, Functional limit theorems for generalized variations of the fractional Brownian sheet, Bernoulli 22 (3) (2016), pp. 1671-1708.
- [10] M. S. Pakkanen and A. Réveillac, Functional limit theorems for weighted quadratic variations of fractional Brownian sheets, in preparation.
- [11] A. Réveillac, Convergence of finite-dimensional laws of the weighted quadratic variations process for some fractional Brownian sheets, Stoch. Anal. Appl. 27 (1) (2009), pp. 51-73.
- [12] A. Réveillac, M. Stauch, and C. A. Tudor, Hermite variations of the fractional Brownian sheet, Stoch. Dyn. 12 (3) (2012), 1150021.
- [13] M. S. Taqqu, Convergence of integrated processes of arbitrary Hermite rank, Z. Wahrsch. Verw. Gebiete 50 (1) (1979), pp. 53-83.
- [14] C. A. Tudor, Analysis of Variations for Self-similar Processes: A Stochastic Calculus Approach, Springer, Cham 2013.
- [15] C. A. Tudor and F. G. Viens, Variations and estimators for self-similarity parameters via Malliavin calculus, Ann. Probab. 37 (6) (2009), pp. 2093-2134.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8691c8cb-64a1-4325-ad5b-802f4e3541ec