Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Cu-Al-based high temperature shape memory alloys are preferred commonly due to their cheap costs and shape memory properties. In recent years, studies have been conducted on developing and producing a new type of Cu-Al based shape memory alloy. In this study, the CuAl-Cr alloy system, which has never been produced before, is investigated. After production, the SEMEDX measurements were made in order to determine the phases in the Cu84–x Al12Crx+4(x = 0, 4, 6) (weight %) alloy system; and precipitate phases together with martensite phases were detected in the alloys. The confirmations of these phases were made via x-ray measurements. The same phases were observed by XRD diffractogram of the alloys as well. The values of transformation temperature of alloys were determined with Differential Scanning Calorimetry (DSC) at 20°C/min heating rate. According to the DSC results, the transformation temperature of the alloys varies between 320°C and 350°C. This reveals that the alloys show high temperature shape memory characteristics.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
1595--1598
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
autor
- Inonu University, Vocational School of Health Service, Malatya, Turkey
autor
- Firat University, Faculty of Science, Department of Physics, Elaziğ, Turkey
autor
- Gazi University, Faculty of Science, Department of Physics, Ankara, Turkey
Bibliografia
- [1] J. Y. Choi, S. N. Nasser, Mater. Sci. Eng. A 432, 100-107 (2006).
- [2] Q. Y. Wang, Y. F. Zheng, Y. Liu, Mater. Lett. 65, 74-77 (2011).
- [3] S. N. Nasser, J. Y. Choi, Acta Mater. 53, 449-454 (2005).
- [4] G. S. Firstov, J. Van Humbeeck, Y. N. Koval, Mater. Sci. Eng. A 378, 2-10 (2004).
- [5] P. Kumar, A. K. Jain, S. Hussain, A. Pandey, R. Dasgupta, Revista material 20 (1), 284-292 (2015).
- [6] T. Camila, C. Rodrigo, L. Pedro, N. Carina, M. Erick, S. Murilo, C. Gabriel, Metals, Brno, Czech Republic, EU, 2015.
- [7] J. M. G. Salazar, A. Soria, M. I. Barrena, J. Alloy Compd. 387, 109-114 (2005).
- [8] S. Zeller, J. Gnauk, Mater. Sci. Eng. A 481-482, 562-566 (2008).
- [9] J. Fernándeza, A. Isalgueb, R. Franch, Materials Today: Proceedings, 805-808 (2015).
- [10] Y. Aydogdu, F. Kürüm, M. Kök, D. Yakinci, Trans. Indian Ins. Metals. 67-4, 595-600 (2014).
- [11] S. Yang, Y. Su, C. Wang, X. Liu, Mater. Sci. Eng. B 185, 67-73 (2014).
- [12] C. Wang, Y. Su, S. Yang, Z. Shi, X. Liu, Smart Mater. Struct. 23, 1-7 (2014).
- [13] S. N. Saud, E. Hamzah, T. Abubakar, H.R. Bakhsheshi-rad, Trans. Nonferrous Met. Soc. China 25, 1158-1170 (2015).
- [14] J. Lelatko, H. Morawiec, Mater. Sci. Eng. A 481-482, 684-687 (2008).
- [15] Z. S. Šimšic, D. Z. Ivkovic, D. Manasijevic, T. H. Grguric, Y. Dud, M. Gojic, S. Kožuh, A. Kostov, R. Todorovic, J. Alloy Compd. 612, 486-492 (2014).
- [16] R. A. G. Silva, A. Paganotti, S. Gama, A. T. Adorno, T. M. Carvalho, C. M. A. Santos, Mater. Charac. 75, 194-199 (2013).
- [17] A. T. Adorno, R. A. G. Silva, J. Alloy Compd. 473, 139-144 (2009).
- [18] D. Bornhart, Regul Toxicol Pharm. 26, 3-7 (1997).
- [19] M. Iijima, K. Endo, H .Ohno, I. Mizoguchi, Dent Mater J. 17 (1), 31-40(1998).
- [20] M. Ahlers, J. L. Pelegrina, Mater. Sci. Eng. A 356, 298-315 (2003).
- [21] H. Y. Huang, J. P. Liu, Y. Wang, X. F. Liu, J. X. Xie, Mater. Lett. 79, 51-54 (2012).
- [22] H. Y. Huang, Y. Wang, J. X. Xie, Mater. Sci. Eng. A 596, 103-111 (2014).
- [23] H. N. Soliman, N. Habib, Indian J. Phys. 88 (8), 803
Uwagi
EN
1. This work is supported by TUBITAK under Project No: 113F234.
PL
2. Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-868c9fce-ea7d-4246-8e57-ef1f717c6577