PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of unsteady forces acting on a slender cylinder

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Developments in construction engineering (new materials, construction techniques) facilitate the design of very flexible, light structures with low damping which unfortunately results in higher susceptibility of these structures to wind action. It is therefore necessary to use more accurate scientific tools in the engineering phase of these structures. Analytical methods for considering wind effects on structures encounter difficulties with respect to mathematical formulations of aerodynamic forces. In this paper a 2D numerical model has been described which considers the fluid domain with respect to a cylindrical obstacle. This 2D model has been discretized using the finite volume method, and numerical simulations have been undertaken in order to describe the unsteady flow conditions within the analyzed domain. The simulations have been performed with boundary conditions characterizing the flow past a cylindrical obstacle. The results have been compared with the literature data from similar experiments. On the basis of the flow characteristics obtained, as well as the spatial distributions of the flow parameters, a model for further 3D analyses was selected. Next, a 3D numerical study of unsteady flow forces acting on a slender cylinder has been analyzed. Toward the end, a two-way fluid solid interaction approach has been utilized, which incorporates a computational fluid dynamics approach combined with computational solid dynamics.
Słowa kluczowe
Rocznik
Tom
Strony
23--38
Opis fizyczny
Bibliogr. 34 poz., rys., tab.
Twórcy
  • Department of Mechanics of Materials and Structures, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdańsk, Poland
  • Energy Conversion Department, Institute of Fluid Flow Machinery Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
autor
  • Department of Mechanics of Materials and Structures, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdańsk, Poland
autor
  • Department of Mechanics of Materials and Structures, Faculty of Civil and Environmental Engineering, Gdańsk University of Technology, Gdańsk, Poland
Bibliografia
  • [1] Flaga A.: Wind Engineering. Basics and Applications. Arkady,Warszawa 2008 (in Polish).
  • [2] Simiu E., Scanlan R.H.: Wind Effects on Structures: Fundamentals and Applications to Design. John Wiley & Sons Inc., 1996.
  • [3] Wilde K.: Passive Aerodynamic Control of Wind Induced Instabilities in Long Span Bridges. GUT Press, Gdańsk 2002.
  • [4] Strouhal V.: Uber eine besondere art der tonerregung. Ann. Physik Chemie. Neue Folge 5(1878), 126–251.
  • [5] Shyy W.: Computational Modeling for Fluid Flow and Interfacial Transport. Dover Pub., New York 1994.
  • [6] Kornet S., Sławiński D., Ziółkowski P., Badur J.: Analysis of unsteady flow forces on the thermowel l of steam temperature sensor. Trans. Inst. Fluid-Flow Mach. 129(2015), 25–49.
  • [7] Saha A.K.: Three-dimensional numerical study of flow and heat transfer from a cube placed in a uniform flow. Int. J. Heat Fluid Flow 26(2006), 80–94.
  • [8] Sarpkaya T.: A critical review of the intrinsic nature of vortex-induced vibrations. J. Fluid Struct. 19(2004), 389–447.
  • [9] Baarholm G.S, Larsen C.M, Lie H.: On fatigue damage accumulation from in-line and cross-flow vortex-induced vibrations on risers. J. Fluid Struc. 22(2006), 109-127.
  • [10] Sobczyk B., Chróścielewski J., WitkowskiW.: Wind induced vibration analysis of composite footbridge. Biul. WAT 64(2015), 1, 91–101 (in Polish).
  • [11] Dettmer W.G., Perić D.: On the coupling between fluid flow and mesh motion in the modeling of fluid-structure interaction. Comp. Mech. 43(2008), 81–90.
  • [12] Wilde K., Witkowski W.: Simple model of rain-wind-induced vibrations of stayed cables. J. Wind Eng. Ind. Aerod. 91(2003), 873–891.
  • [13] Goujon-Durand S., Jenffer P., Wesfreid J.E.: Downstream evolution of the Benard-von Kármán instability. Phys. Rev. E. 50(1994), 1, 308–315.
  • [14] Zarruk G.A., Cowen E.A., Wu T.-R., Liu P.L-F.: Vortex shedding and evolution induced by a solitary wave propagating over a submerged cylindrical structure. J. Fluid Struc. 52(2015), 181–198.
  • [15] Norberg C.: Fluctuating lift on a circular cylinder: review and new measurements. J. Fluid Struc. 17(2003), 57–96.
  • [16] Zdravkovich M.M.: Flow Around Circular Cylinders: Vol. 1. Fundamentals. Oxford University Press, Oxford 1997.
  • [17] Sumner D.: Flow above the free end of a surface-mounted finite-height circular cylinder: A review. J. Fluids Struc. 43(2013), 41–63.
  • [18] Piperno S., Farhat C., Larrouturou B.: Partitioned procedures for the transient solution of coupled aeroelastic problems. Part I: Model problem, theory and two dimensional application. Comput. Meth. Appl. M. 124(1995), 1-2, 79–112.
  • [19] Farhat C., Lesoinne M., Maman N.: Mixed explicit/implicit time integration of coupled aeroelastic problems: there-field formulation, geometric conservation and distributed solution. Int. J. Numer. Meth. Fl. 21(1995), 10, 807–835.
  • [20] Fahrat C., Lesoinne M.: Two efficient staggered algorithms for the serial and paral lel solution of three-dimensional nonlinear transient aeroelastic problems. Comput. Method. Appl. M.182(2000), 499–515.
  • [21] Fahrat C., Van der Zee K.G., Geuzaine P.: Provably second-order time accurate looselycoupled solution algorithms for transient nonlinear computational aeroelasticity. Comput. Meth. Appl. M. 195(2006), 1973-2001.
  • [22] Vaze M., Haiyan M., Gopalan H., Joo P.H., Jing L.: Methodology Development for Wind Driven Cantiliver Vibration using Fluent-Structural Interaction. In: Proc. World Cong. Computational Mechanics XII, Seoul, July 2016.
  • [23] Badur J.: Numerical modeling of sustainable combustion in gas turbine. Rep. IMP PAN, Gdańsk 2003 (in Polish).
  • [24] Zienkiewicz O.C.: Finite Element Method: Vol. I, II, III. Elsevier 2005.
  • [25] Hou G., Wang J., Layton A.: Numerical methods for fluid-structure interaction – A review. Commun. Comput. Phys. 12(2012), 2, 337–377.
  • [26] Badur J.: Five lectures of Contemporary Fluid Thermomechanical Fluids (2nd Edn.) Wyd. IMP PAN, Gdańsk 2005 (in Polish).
  • [27] Chopra A.K.: Dynamics of Structures: Theory and Applications to Earthquake Engineering. Prentice Hall, New Jersey 1995.
  • [28] Rucka M., Wilde K.: Structural Dynamics with Examples in Matlab. GUT Press, Gdańsk 2011 (in Polish).
  • [29] Eurocode 1: Actions on structures – General actions – P. 1-4: Wind actions (EN 1991-1-4:2004).
  • [30] Lienhard J.H.: Synopsis of Lift, Drag and Vortex Frequency Data for Rigid Circular Cylinders. Washington State University, College of Engineering, Res. Div. Bull. 300(1966), 1–32.
  • [31] Blevins R.D.: Flow-induced vibration. Krieger Publishing Company, Malabar 1986.
  • [32] Tucker P.G., Pan Z.: A Cartesian cut cel l method for incompressible viscous flow. Appl. Math. Model. 24(2000), 591–606.
  • [33] Ingram D.M., Causon D.M., Mingham C.G.: Developments in Cartesian cut cel l methods. Math. Comput Simulat. 61(2003), 561–572.
  • [34] Skorko M.: Physics. PWN, Warszawa 1978 (in Polish).
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-868c2252-0878-4d93-a0aa-084265e6aba2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.