PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Mapping of impervious surfaces with the use of remote sensing imagery: Support Vector Machines classification and GIS-based approach

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wizualizacja powierzchni nieprzepuszczalnych z wykorzystaniem zdjęć teledetekcyjnych: klasyfikacja support vector machines i podejście oparte na GIS
Języki publikacji
EN
Abstrakty
EN
This study focuses on the problem of mapping impervious surfaces in urban areas and aims to use remote sensing data and orthophotos to accurately classify and map these surfaces. Impervious surface indices and green space assessments are widely used in land use and urban planning to evaluate the urban environment. Local governments also rely on impervious surface mapping to calculate stormwater fees and effectively manage stormwater runoff. However, accurately determining the size of impervious surfaces is a significant challenge. This study proposes the use of the Support Vector Machines (SVM) method, a pattern recognition approach that is increasingly used in solving engineering problems, to classify impervious surfaces. The research results demonstrate the effectiveness of the SVM method in accurately estimating impervious surfaces, as evidenced by a high overall accuracy of over 90% (indicated by the Cohen’s Kappa coefficient). A case study of the “Parkowo-Leśne” housing estate in Warsaw, which covers an area of 200,000 m², shows the successful application of the method. In practice, the remote sensing imagery and SVM method allowed accurate calculation of the area of the surface classes studied. The permeable surface represented about 67.4% of the total complex and the impervious surface corresponded to the remaining 32.6%. These results have implications for stormwater management, pollutant control, flood control, emergency management, and the establishment of stormwater fees for individual properties. The use of remote sensing data and the SVM method provides a valuable approach for mapping impervious surfaces and improving urban land use management.
PL
Niniejsze badanie koncentruje się na problemie wyznaczania powierzchni nieprzepuszczalnych na obszarach miejskich i ma na celu wykorzystanie danych teledetekcyjnych i ortofotomap do dokładnej klasyfikacji i wizualizacji tych powierzchni. Wskaźniki powierzchni nieprzepuszczalnych i oceny terenów zielonych są szeroko stosowane w planowaniu przestrzennym i urbanistycznym do oceny środowiska miejskiego. Władze lokalne polegają również na oszacowaniu wielkości powierzchni nieprzepuszczalnych w celu obliczania opłat za wodę deszczową i skutecznego zarządzania odpływem wody deszczowej. Jednak dokładne określenie wielkości nieprzepuszczalnych powierzchni jest poważnym wyzwaniem. W niniejszym badaniu zaproponowano wykorzystanie metody Support Vector Machines (SVM), podejścia opartego na rozpoznawaniu wzorców, które jest coraz częściej stosowane w rozwiązywaniu problemów inżynieryjnych, do klasyfikacji powierzchni nieprzepuszczalnych. Wyniki badań pokazują skuteczność metody SVM w dokładnym szacowaniu powierzchni nieprzepuszczalnych, o czym świadczy wysoka ogólna precyzja wynosząca ponad 90% (na co wskazuje współczynnik Kappa Cohena). Studium przypadku osiedla „Parkowo-Leśne” w Warszawie o powierzchni 200 000 m² pokazuje skuteczne zastosowanie metody. Wyniki wskazują, że powierzchnie przepuszczalne stanowiły około 67,4% całego kompleksu, podczas gdy powierzchnie nieprzepuszczalne stanowiły pozostałe 32,6%. Wyniki te mogą mieć wpływ na zarządzanie wodami opadowymi, kontrolę zanieczyszczeń, zapobieganie powodziom, zarządzanie kryzysowe i ustalanie opłat za wodę opadową dla poszczególnych nieruchomości. Wykorzystanie danych teledetekcyjnych i metody SVM zapewnia cenne podejście do wizualizacji powierzchni nieprzepuszczalnych i poprawy zarządzania użytkowaniem gruntów miejskich.
Rocznik
Strony
129--146
Opis fizyczny
Bibliogr. 42 poz., il., tab.
Twórcy
  • Warsaw University of Technology, Faculty of Civil Engineering, Warsaw, Poland
  • Universitat Politècnica de València, Department of Computer Science and Artificial Intelligence, Paterna (Valencia), Spain
  • University of Granada, Faculty of Economics and Business Sciences, Campus Cartuja, Granada, Spain
Bibliografia
  • [1] J. Sobieraj, M. Bryx, and D. Metelski, “Stormwater management in the City of Warsaw: a review and evaluation of technical solutions and strategies to improve the capacity of the combined sewer system”, Water, vol. 14, no. 13, art. no. 2109, 2022, doi: 10.3390/w14132109.
  • [2] A. Maciejewska, Ł. Kuzak, J. Sobieraj, and D. Metelski, “The impact of opencast lignite mining on rural development: a literature review and selected case studies using desk research, panel data and GIS-based analysis”, Energies, vol. 15, no. 15, art. no. 5402, 2022, doi: 10.3390/en15155402.
  • [3] Q. Weng, “Remote sensing of impervious surfaces in the urban areas: requirements, methods, and trends”, Remote Sens. Environment, vol. 117, pp. 34-49, 2012, doi: 10.1016/j.rse.2011.02.030.
  • [4] M.E. Bauer, N.J. Heinert, J.K. Doyle, and F. Yuan, “Impervious surface mapping and change monitoring using Landsat re-mote sensing”, presented at ASPRS Annual Conference, 18-23 May 2004, Denver, CO, USA.
  • [5] T. Schueler, “The importance of imperviousness”, Watershed Protection Techniques, vol. 1, no. 3, pp. 100-101, 1994.
  • [6] J. Sobieraj, M. Bryx, and D. Metelski, “Management of rainwater as a barrier for the development of the City of Warsaw”, Archives of Civil Engineering, vol. 68, no. 4, pp. 419-443, 2022, doi: 10.24425/ace.2022.143047.
  • [7] Y. Deng, F. Fan, and R. Chen, “Extraction and analysis of impervious surfaces based on a spectral un-mixing method using Pearl River Delta of China Landsat TM/ETM¸ imagery from 1998 to 2008”, Sensors, vol. 12, no. 2, pp. 1846-1862, 2012, doi: 10.3390/s120201846.
  • [8] M. Ustuner, F.B. Sanli, and B. Dixon, “Application of support vector machines for landuse classification using high-resolution rapideye images: A sensitivity analysis”, European Journal of Remote Sensing, vol. 48, no. 1, pp. 403-422, 2015, doi: 10.5721/EuJRS20154823.
  • [9] M.L. McHugh, “Interrater reliability: The kappa statistic”, Biochemia Medica, vol. 22, pp. 276-282, 2012.
  • [10] J. Sobieraj and D. Metelski, “Project risk in the context of construction schedules - combined Monte Carlo simulation and time at risk (TaR) approach: insights from the Fort Bema housing estate complex”, Applied Sciences, vol. 12, no. 3, art. no. 1044, 2022, doi: 10.3390/app12031044.
  • [11] D. Lu, E. Moran and S. Hetrick, “Detection of impervious surface change with multitemporal Landsat images in an urban-rural frontier”, ISPRS Journal Photogrammetry and Remote Sensing, vol. 66, no. 3, pp. 298-306, 2011, doi: 10.1016/j.isprsjprs.2010.10.010.
  • [12] Q.Weng, “Modeling urban growth effect on surface runoff with the integration of remote sensing and GIS”, Environmental Management, vol. 28, pp. 737-748, 2001, doi: 10.1007/s002670010258.
  • [13] C. Cortes and V.N. Vapnik, “Support vector networks”, Machine Learning, vol. 20, no. 3, pp. 273-297, 1995.
  • [14] J. Sobieraj, M. Fernández, and D. Metelski, “A comparison of different machine learning algorithms in the classification of impervious surfaces: case study of the housing estate Fort Bema in Warsaw (Poland)”, Buildings, vol. 12, no. 12, art. no. 2115, 2022, doi: 10.3390/buildings12122115.
  • [15] A. Srivastava, S. Bharadwaj, R. Dubey, V.B. Sharma, and S. Biswas, “Mapping vegetation and measuring the performance of machine learning algorithm in lulc classification in the large area using Sentinel-2 and Landsat-8 datasets of dehradun as a test case”, International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, vol. 18, pp. 529-535, 2022, doi: 10.5194/isprs-archives-XLIII-B3-2022-529-2022.
  • [16] M. Mrowiec, E. Ociepa, and I. Deska, “Role of extensive green roofs in water management in urban drainage systems”, International Journal of Conservation Science, vol. 12, pp. 701-712, 2021.
  • [17] L. Møller-Jensen, “Knowledge-based classification of an urban area using texture and context information in Landsat-TM imagery”, Photogrammetric Engineering and Remote Sensing, vol. 56, pp. 899-904, 1990.
  • [18] K.E. Sawaya, L.G. Olmanson, N.J. Heinert, P.L. Brezonik, and M.E. Bauer, “Extending satellite remote sensing to local scales: Land and water resource monitoring using high-resolution imagery”, Remote Sensing of Environment, vol. 88, no. 1-2, pp. 144-156, 2003, doi: 10.1016/j.rse.2003.04.006.
  • [19] L. Yang, C. Huang, C.G. Homer, B.K. Wylie, and M.J. Coan, “An approach for mapping large-area impervious surfaces: Synergistic use of Landsat-7 ETM¸ and high spatial resolution imagery”, Canadian Journal of Remote Sensing, vol. 29, no. 2, pp. 230-240, 2003, doi: 10.5589/m02-098.
  • [20] C. Wu and A.T. Murray, “Estimating impervious surface distribution by spectral mixture analysis”, Remote Sensing of Environment, vol. 84, no. 4, pp. 493-505, 2003, doi: 10.1016/S0034-4257(02)00136-0.
  • [21] D. Lu and Q. Weng, “Use of impervious surface in urban land-use classification”, Remote Sensing of Environment, vol. 102, no. 1-2, pp. 146-160, 2006, doi: 10.1016/j.rse.2006.02.010.
  • [22] P. Li, J. Guo, B. Song, and X. Xiao, “A multilevel hierarchical image segmentation method for urban impervious surface mapping using very high resolution imagery”, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 4, no. 1, pp. 103-116, 2011, doi: 10.1109/JSTARS.2010.2074186.
  • [23] M.D. Mura, J.A. Benediktsson, B. Waske, and L. Bruzzone, “Morphological attribute profiles for the analysis of very high resolution images”, IEEE Transactions on Geoscience and Remote Sensing, vol. 48, no. 10, pp. 3747-3762, 2010, doi: 10.1109/TGRS.2010.2048116.
  • [24] J. Wang, Y. Zhao, Y. Fu, L. Xia, and J. Chen, “Improving LSMA for impervious surface estimation in an urban area”, European Journal of Remote Sensing, vol. 55, no. 1, pp. 37-51, 2022, doi: 10.1080/22797254.2021.2018666.
  • [25] Y. Lu and Y. Liu, “Pervasive location acquisition technologies: Opportunities and challenges for geospatial studies”, Computers Environment and Urban Systems, vol. 36, no. 2, pp. 105-108, 2012, doi: 10.1016/j.compenvurbsys.2012.02.002.
  • [26] C. Liu, Z. Shao, M. Chen, and H. Luo, “MNDISI: A multi-source composition index for impervious surface area estimation at the individual city scale”, Remote Sensing Letters, vol. 4, no. 8, pp. 803-812, 2013, doi: 10.1080/2150704X.2013.798710.
  • [27] J. Arsanjani, M. Helbich, and M. Bakillah, “Exploiting volunteered geographic information to ease land use mapping of an urban landscape”, in Proceedings of the 29th Urban Data Management Symposium International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 29-31 May 2013. London, UK, 2013, pp. 51-55.
  • [28] Y. Liu, X. Liu, S. Gao, L. Gong, C. Kang, Y. Zhi, and L. Shi, “Social sensing: A new approach to understanding our socioeconomic environments”, Annals of the Association of American Geographers, vol. 105, no. 3, pp. 512-530, 2015, doi: 10.1080/00045608.2015.1018773.
  • [29] B. Johnson and K. Iizuka, “Integrating OpenStreetMap crowdsourced data and Landsat time-series imagery for rapid land use/land cover (LULC) mapping: Case study of the Laguna de Bay area of the Philippines”, Applied Geography, vol. 67, pp. 140-149, 2016, doi: 10.1016/j.apgeog.2015.12.006.
  • [30] T. Hu, J. Yang, X. Li, and P. Gong, “Mapping urban land use by using landsat images and open social data”, Remote Sensing, vol. 8, no. 2, art. no. 151, 2016, doi: 10.3390/rs8020151.
  • [31] X. Huang, D. Wen, J. Li, and R. Qin, “Multi-level monitoring of subtle urban changes for the megacities of China using high-resolution multi-view satellite imagery”, Remote Sensing of Environment, vol. 196, pp. 56-75, 2017, doi: 10.1016/j.rse.2017.05.001.
  • [32] T. Zhang and X. Huang, “Monitoring of urban impervious surfaces using time series of high-resolution remote sensing im-ages in rapidly urbanized areas: A case study of Shenzhen”, IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, vol. 11, no. 8, pp. 2692-2708, 2018, doi: 10.1109/JSTARS.2018.2804440.
  • [33] Y. Yu, J. Li, C. Zhu, and A. Plaza, “Urban impervious surface estimation from remote sensing and social data”, Photogrammetric Engineering and Remote Sensing, vol. 84, no. 12, pp. 771-780, 2018, doi: 10.14358/PERS.84.12.771.
  • [34] J. Zawadzki, P. Fabijańczyk, and K. Przeździecki, “Geostatistical methods as a tool supporting revitalization of industrially degraded and post-mining areas”, New Trends Production Engineering, vol. 3, no. 1, pp. 30-40, 2020, doi: 10.2478/ntpe-2020-0004.
  • [35] M. D’Emilio, R. Coluzzi, M. Macchiato, V. Imbrenda, M. Ragosta, S. Sabia, and T. Simoniello, “Satellite data and soil magnetic susceptibility measurements for heavy metals monitoring: Findings from Agri Valley (Southern Italy)”, Environmental Earth Sciences, vol. 77, art. no. 63, 2018, doi: 10.1007/s12665-017-7206-4.
  • [36] K. Przeździecki, J. Zawadzki, and Z. Miatkowski, “Use of the temperature-vegetation dryness index for remote sensing grassland moisture conditions in the vicinity of a lignite open-cast mine”, Environmental Earth Sciences, vol. 77, art. no. 623, 2018, doi: 10.1007/s12665-018-7815-6.
  • [37] J. Zawadzki, C.J. Cieszewski, M. Zasada, and R.C. Lowe, “Applying geostatistics for investigations of forest ecosystems using remote sensing imagery”, Silva Fennica, vol. 39, pp. 599-618, 2005.
  • [38] B. Waske and J.A. Benediktsson, “Fusion of support vector machines for classification of multisensor data”, IEEE Transactions on Geoscience and Remote Sensing, vol. 45, no. 12, pp. 3858-3866, 2007, doi: 10.1109/TGRS.2007.898446.
  • [39] B.W. Szuster, Q. Chen, and M. Borger, “A comparison of classification techniques to support land cover and land use analysis in tropical coastal zones”, Applied Geography, vol. 31, no. 2, pp. 525-532, 2011, doi: 10.1016/j.apgeog.2010.11.007.
  • [40] P.F. Pai, H. Wei-Chiang, C. Ping-Teng, and C. Chen-Tung, “The application of support vector machines to forecast tourist arrivals in Barbados: An empirical study”, International Journal of Management, vol. 23, art. no. 375, 2006.
  • [41] E.T. Slonecker, D.B. Jennings, and D. Garofalo, “Remote sensing of impervious surfaces: A review”, Remote Sensing Reviews, vol. 20, no. 3, pp. 227-255, 2001, doi: 10.1080/02757250109532436.
  • [42] A.R. Shahtahmassebi, J. Song, Q. Zhenget al., “Remote sensing of impervious surface growth: A framework for quantifying urban expansion and re-densification mechanisms”, International Journal of Applied Earth Observation and Geoinformation, vol. 46, pp. 94-112, 2016, doi: 10.1016/j.jag.2015.11.007.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-86880a69-dbf5-44fb-a810-ab4a426f51e8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.