PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Critical state constitutive models and shear loading of overconsolidated clays with deviatoric hardening

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents an enhanced constitutive model integrating deviatoric hardening with a modified yield surface for overconsolidated clayey soils in a general framework of Cam-clay type models. Its performance was assessed with the simulation of drained and undrained triaxial tests on three clays at different consolidation states in comparison to two critical state models. The proposed model satisfactorily estimates the shear resistance, while capturing the smooth nonlinearity of the soil response. Shear triaxial tests at constant mean pressure were performed on an overconsolidated marl to study the shear response. Their simulation attests the importance of deviatoric hardening integration.
Wydawca
Rocznik
Strony
247--262
Opis fizyczny
Bibliogr. 44 poz., tab., rys.
Twórcy
autor
  • PhD student, Centre de Géosciences, MINES ParisTech, 35 rue Saint-Honoré, 77300, Fontainebleau France
  • PhD, Centre de Géosciences, MINES ParisTech, 35 rue Saint-Honoré, 77300, Fontainebleau France
  • PhD, Centre de Géosciences, MINES ParisTech, 35 rue Saint-Honoré, 77300, Fontainebleau France
  • PhD, Cerema Méditerranée, 30 rue Albert Einstein, CS 70499, 13593 Aix en Provence France
Bibliografia
  • [1] Amorosi, A., Boldini, D., & Germano, V. (2008). Implicit integration of a mixed isotropic kinematic hardening plasticity model for structured clays. International journal for numerical and analytical methods in geomechanics, 32(10), 1173–1203.
  • [2] Barla, M. (1999). Tunnels in swelling ground: simulation of 3d stress paths by triaxial laboratory testing (Unpublished doctoral dissertation). Politecnico di Torino.
  • [3] Bishop, A. W., & Henkel, D. J. (1957). The measurment of soil properties in the triaxial test. Edward Arnold Publishers.
  • [4] Chakraborty, T., Salgado, R., & Loukidis, D. (2013). A twosurface plasticity model for clay. Computers and Geotechnics, 49, 170-190.
  • [5] Chen, J. (2017). A monotonic bounding surface critical state model for clays. Acta Geotechnica, 12, 225-230.
  • [6] Chen, Y., & Yang, Z. (2017). A family of improved yield surfaces and their application in modeling of isotropically overconsolidated clays. Computers and Geotechnics, 90, 133–143.
  • [7] Dafalias, Y. F. (1986). An anisotropic critical state soil plasticity model. Mechanics Research communications, 13, 341-347.
  • [8] Dafalias, Y. F. (2016). Must critical state theory be revisited to include fabric effects? Acta Geotechnica, 11, 479-491.
  • [9] Dafalias, Y. F., Manzari, M. T., & Papadimitriou, A. G. (2006). Saniclay: simple anisotropic clay plasticity model. International Journal For Numerical and Analytical Methods In Geomechanics, 30, 1231-1257.
  • [10] Dafalias, Y. F., & Taiebat, M. (2013). Anatomy of rotational hardening in clay plasticity. Géotechnique, 63, 1406-1418.
  • [11] DAO, L. Q. (2015). Etude du comportement anisotrope de l’argile de boom (Unpublished doctoral dissertation). Ecole des Ponts ParisTech.
  • [12] Desai, C., Somasundaram, S., & Frantziskonis, G. (1986). A hierarchical approach for constitutive modelling of geologic materials. International Journal for Numerical and Analytical Methods in Geomechanics, 10(3), 225–257.
  • [13] Desai, C. S. (1980). A general basis for yield, failure and potential functions in plasticity. International Journal for Numerical and Analytical Methods in Geomechanics, 4(4), 361–375.
  • [14] Einav, I., & Puzrin, A. M. (2004). Pressure-dependent elasticity and energy conservation in elastoplastic models for soils. Journal of Geotechnical and Geoenvironmental engineering, 63(8), 81-92.
  • [15] Gasparre, A. (2005). Advanced laboratory characterization of london clay (Unpublished doctoral dissertation). Imperial College London.
  • [16] Gens, A., & Potts, D. M. (1988). Critical state models in computational geomechanics. Engineering Computation, 5, 178-197.
  • [17] Gilelron, N. (2016). Use of the hardening soil model for urban tunnels design. In 25th european young geotechnical engineers conference, sibiu, romania.
  • [18] Gilleron, N., & Bourgeois, E. (2016). Influence of deviatoric stress dependent stiffness on settlement trough width in 2d and 3d finite element modelling of tunnelling. In (p. 567-576).
  • [19] Hattab, M., & Hicher, P.-Y. (2004). Dilating behaviour of overconsolidated clay. Soils and Foundations, 44(4), 27–40.
  • [20] Hong, P. Y., Pereira, J. M., Tang, A. M., & Cui, Y. J. (2016). A two-surface plasticity model for stiff clay. Acta Geotechnica, 11, 871-885.
  • [21] Houlbsy, G. T., Amorosi, A., & Rojas, E. (2005). Elastic moduli of soils dependent on pressure: a hyperelastic formulation. Géotechnique, 55(5), 383-392.
  • [22] Jin, Z. Y., Xu, Q., & Hicher, P. Y. (2017). Estimation of critical state-related formula in advanced constitutive modeling of granular material. Acta Geotechnica, 12(6), 1329-1351.
  • [23] Lagioia, R., & Potts, D. M. (1988). A new versatile expression for yield and plastic potential surfaces. Computers and Geotechnics, 5, 178-197.
  • [24] Liu, M., & Carter, J. (2002). A structured cam clay model. Canadian Geotechnical Journal, 39, 1313-1332.
  • [25] Mair, R. J. (1979). Centrifugal modelling of tunnel construction in sof clay (Unpublished doctoral dissertation). Cambridge University.
  • [26] Mroz, Z., & Zienkiewicz, O. C. (1984). Uniform formulation of constitutive equations for clays and sands. In Mechanics of engineering materials (John Wiley and Sons ed., p. 415-449).
  • [27] Obrzud, F. (2010). On the use of the hardening soil small strain model in geotechnical practice. Numerics in Geotechnics and Structures.
  • [28] Panet, M. (1995). Calcul des tunnels par la méthode convergence-confinement. Presses de l’Ecole Nationale des Ponts et Chaussées.
  • [29] Potts, D. M., & Zdravkovic, L. (1999). Finite element analysis in geotechnical engineering : theory. Thomas Telford.
  • [30] Roscoe, K. H., & Burland, J. B. (1968). On the generalized stress-strain behevior of wet clay. Cambridge University Press.
  • [31] Roscoe, K. H., Schofield, A. N., & Wroth, C. P. (1958). On the yielding of soils. Géotechnique, 8, 22-52.
  • [32] Schanz, T., & Vermeer, P. (2000). The hardening soil model: Formulation and verification. Beyond 2000 in Computational Geotechnics.
  • [33] Schofield, A., & Wroth, P. (1968). Critical state soil mechanics (Vol. 310). McGraw-Hill London.
  • [34] Serratrice, J. F. (2002). Outils et procédures de caractérisation des sols indurés et des roches tendres : l’expérience du lrpc d'aix en provence. PARAM, 313-326.
  • [35] Suebsuk, J., Horpibulsuk, S., & Liu, M. D. (2010). Modified structured cam clay: A generalised critical state model for destructured, naturally structured and artificially structured clays. Computers and Geotechnics, 37, 956-968.
  • [36] Suebsuk, J., Horpibulsuk, S., & Liu, M. D. (2011). A critical state soil model for overconsolidated clays. Computers and Geotechnics, 38, 648-658.
  • [37] Sultan, N., Cui, Y.-J., & Delage, P. (2010). Yielding and plastic behaviour of boom clay. Géotechnique, 60(9), 657-666.
  • [38] Tijani, M. (1996). Short description of viplef code. In Coupled thermo-hydro-mechanical processes of fractured media: mathematical and experimental studies (Elsevier ed., p. 507-511).
  • [39] Tijani, M. (2008). Contribution à l'étude thermomécanique des cavités réalisées par lessivage dans des formations géologiques salines. Université Pierre et Marie Curie.
  • [40] Truty, A., & Obrzud, R. (2015). Improved formulation of the hardening soil model in the context of modeling the undrained behavior of cohesive soils. Studia Geotechnica et Mechanica,37(2), 61–68.
  • [41] Wood, D. M. (2003). Geotechnical modelling. CRC Press.
  • [42] Yu, H. S. (1998). Casm: A unified state parameter model for clay and sand. International Journal For Numerical and Analytical Methods In Geomechanics, 22, 1621-653.
  • [43] Yu, H. S. (2006). Plasticity and geotechnics. Springer.
  • [44] Zytynski, M., Randolph, M. F., & Wroth, C. P. (1978). On modelling the unloading-reloading behaviour of soils. International Journal for Numerical and Analytical Methods in Geomechanics, 2, 87-94.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-867e6935-daed-4ff3-9799-b270c8e5d51b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.