PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wire-feed assisted A-TIG welding of dissimilar steels

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This study investigates the activated flux-tungsten inert gas welding (A-TIG) welding of dissimilar P92 steel-304H ASS using ‘wire feed’ (patent pending) in terms of weld pool mixing behavior, microstructure and mechanical properties of the weld joint. ErNiCrMo-3 wire was fed during welding and three-wire feeding configurations were analyzed in view of filler wire melting and weld pool mixing behavior. The metal from filler wire is transferred into the weld pool in the form of ‘interrupted liquid bridge’ and ‘uninterrupted liquid bridge.’ The ‘uninterrupted liquid bridge’ melting resulted in homogeneous mixing of filler wire into the weld pool. The weld joint produced using the best wire feeding configuration was characterized and compared with the weld joint developed without wire feed. Microstructure alterations were realized with the use of wire feed. The weld zone with wire feed exhibited a fully austenitic structure, whereas; the completely martensitic structure was obtained using A-TIG welding without wire feed. The microstructural transformation led to the improvement of ductility and impact toughness of weld joint without substantial loss of tensile strength. The total elongation and impact toughness of the A-TIG weld joint with wire feed was 45.9% and (89 ± 2) J, respectively, which were significantly higher in contrast to the A-TIG weld joint without wire feed [total elongation: 37.4% and impact toughness: (30 ± 2) J].
Rocznik
Strony
672--691
Opis fizyczny
Bibliogr. 16 poz., rys., wykr.
Twórcy
  • Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
  • Department of Mechanical and Industrial Engineering, Indian Institute of Technology Roorkee, Uttarakhand 247667, India
Bibliografia
  • [1] Cao J, Gong Y, Zhu K, Yang ZG, Luo XM, Gu FM. Microstructure and mechanical properties of dissimilar materials joints between T92 martensitic and S304H austenitic steels. Mater Des. 2011;32:2763–70. https:// doi. org/ 10. 1016/j. matdes. 2011. 01. 008.
  • [2] Mittal R, Singh B. Microstructures and mechanical properties of dissimilar T91/347H steel weldments. J Mater Eng Perform. 2015;220:76–86. https:// doi. org/ 10. 1016/j. jmatp rotec. 2015. 01. 008.
  • [3] Sharma P, Dwivedi DK. A-TIG welding of dissimilar P92 steel and 304H austenitic stainless steel: mechanisms, microstructure and mechanical properties. J Manuf Process. 2019;44:166–78. https:// doi. org/ 10. 1016/j. jmapro. 2019. 06. 003.
  • [4] Vidyarthy RS, Kulkarni A, Dwivedi DK. Study of microsructure and mechanical property relationships of A-TIG welded P91-316L dissmilar steel joint. Mater Sci Eng A. 2017;695:249–57. https:// doi. org/ 10. 1016/j. msea. 2017. 04. 038.
  • [5] Pandey C, Mohan M, Kumar P. Softening mechanism of P91 steel weldments using heat treatments. Arch Civ Mech Eng. 2019;9:297–310.
  • [6] Pandey C, Mohan M, Kumar P. A brief study on d-ferrite evolution in dissimilar P91 and P92 steel weld joint and their effect on mechanical properties. Arch Civ Mech Eng. 2017;8:713–22.
  • [7] Kulkarni A, Dwivedi DK, Vasudevan M. Dissimilar metal welding of P91 steel-AISI 316L SS incoloy 800 and Inconel 600 interlayers by using activated TIG welding process and its effect on the microstructure and mechanical properties. J Mater Process Technol. 2019;274:1–14. https:// doi. org/ 10. 1016/j. jmatp rotec. 2019. 116280.
  • [8] Muhammad S. Effect of leading and trailing torch configuration on mixing and fluid behavior of laser-gas metal arc hybrid welding. J Laser Appl. 2017. https:// doi. org/ 10. 2351/1. 50083 04.
  • [9] Lippold JC, Kotecki DJ. Welding metallurgy and weldability. Wiley; 2005.
  • [10] Ramkumar KD, Pavan B, Chandrasekar V. Development of improved microstructural traits and mechanical integrity of stabilized satinless steel joints of AISI 321. J Manuf Process. 2018;32:582–94. https:// doi. org/ 10. 1016/j. jmapro. 2018. 03. 029.
  • [11] Dudko V, Belyakov A, Molodov D. Microstructure evolution and pinning of boundaries by precipitates in a 9 pct Cr heat resistant steel during creep. Metall Mater Trans A. 2011. https:// doi. org/ 10. 1007/ s11661- 011- 0899-1.
  • [12] Naffakh H, Shamanian M, Ashrafizadeh F. Dissimilar welding of AISI 310 austenitic stainless steel to nickel-based alloy Inconel 657. J Mater Process Technol. 2009;209:3628–39. https:// doi. org/ 10. 1016/j. jmatp rotec. 2008. 08. 019.
  • [13] Zhao L, Jing H, Xu L, An J, Xiao G. Investigation on mechanism of type IV cracking in P92 steel at 650 °C. Mater Res Soc. 2011;26:934–43. https:// doi. org/ 10. 1557/ jmr. 2011. 11.
  • [14] Naffakh H, Shamanian M, Ashrafizadeh F. Microstructural evolutions in dissimilar welds between AISI 310 austenitic stainless steel and Inconel 657. J Mater Sci. 2010;45:2564–73. https:// doi. org/ 10. 1007/ s10853- 010- 4227-8.
  • [15] Sharma P, Dwivedi DK. Comparative study of activated flux-GTAW and multipass-GTAW dissimilar P92 steel-304H ASS joints. Mater Manuf Processes. 2019;34:1195–204. https:// doi. org/ 10. 1080/ 10426 914. 2019. 16051 75.
  • [16] Sindo K. Welding metallurgy. Hoboken: Wiley; 2003.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-867e5cbc-813b-4b8b-b15f-656819ed2f3f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.