PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Element Addition, Microstructure Characteristics, Mechanical Properties, Machining and Welding Processes of the Hadfield Austenitic Manganese Steel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
High manganese steel, also called Hadfield steel, is an alloy essentially made up of iron, carbon, and manganese. This type of steel occupies an important place in the industry. It possesses high impact toughness and high resistance against abrasive wear and hardens considerably during work hardening. The problem with this kind of steel is the generation of carbides at the grain boundaries after the casting. However, heat treatment at the high-temperature range between 950°C and 1150°C followed by rapid quenching in water is proposed as a solution to remove carbides and obtain a fully austenitic structure. Under the work hardening effects, the hardness of Hadfield steel increases greatly due to the transformation of the austenite γ to martensite ε or α and mechanical twinning, which acts as an obstacle for sliding dislocations. Hot machining is the only solution to machine Hadfield steel adequately without damage of tools or changing the mechanical characteristics of the steel. The choice of welding parameters is important to prevent the formation of carbides and obtain welded steel with great characteristics. This paper aims to give an overview about Hadfield steel, element addition effect, microstructure, heat treatments, work hardening, machinability and welding processes.
Twórcy
  • Direction de recherche scientifique et technologique, École supérieure du matériel, Algieria
  • Polytechnic Military School, Materials Engineering Laboratory, Bordj El Bahri, Alger, Algeria
  • Polytechnic Military School, Materials Engineering Laboratory, Bordj El Bahri, Alger, Algeria
autor
  • Polytechnic Military School, Materials Engineering Laboratory, Bordj El Bahri, Alger, Algeria
Bibliografia
  • [1] E. Curiel-Reyna, J. Contreras, T. Rangel-Ortis, A. Herrera, L. Baños, A. del. Real, M.E. Rodríguez, Mater. Manuf. Process. 23 (1), 14-20 (2008).
  • [2] S.W. Bhero, B. Nyembe, K. Lentsoana, CMMME’ 2013. 174-175 (2013).
  • [3] B. Bandanadjaja, E. Hidayat, J. Phys.: Conf. Ser. 1450, 012125 (2020).
  • [4] A. Hajjaji, B. Boubeker, A. Zamma, S. Eljoumani, M. Idiri, H. Essaghir, 12ème Congrès de Mécanique, (2015).
  • [5] E.G. Moghaddam, N. Varahram, P. Davami, Mater. Sci. Eng. A. 532, 260-266 (2012)
  • [6] A. Šalak, M. Selecká, Manganese in powder metallurgy steels, Springer Science & Business Media, (2012).
  • [7] R.W. Smith, W.B.F. Mackay, Can. Metall. Quart. 42 (3), 333-342 (2003).
  • [8] S.E. Madani, O.B. Lenda, F. Sabir, S. Elhamzi, H. Gziri, A. Ibnlfassi, L. Zerrouk, J. Adv. Phy. 10 (2), 2762-2773 (2015).
  • [9] O. Çakir, ICAME 2016, 227-232 (2016).
  • [10] M. Sabzi, M. Farzam, Mater. Res. Express. 6 (10), 1065c2 (2019)
  • [11] J.O. Olawale, S.A. Ibitoye, M.D. Shittu, Mater. Res. 16 (6), 1274-1281 (2013)
  • [12] O. Bouaziz, N. Guelton, Mater. Sci. Eng. A. 319, 246-249 (2001)
  • [13] N. Tosun, L. Ozler, Int. J. Adv. Manuf. Technol. 23 (11-12), 777-782 (2004)
  • [14] M. Sabzi, A. Obeydavi, S.H. Mousavi Anijdan, Mech. Adv. Mater. Struct. 26 (12), 1053-1063 (2019).
  • [15] M. Sabzi, S.M. Dezfuli, J. Manuf. Process. 34 (April), 313-328 (2018).
  • [16] A. Hadji, H. Maouche, K. Bouhamla, CPI2011 (2011).
  • [17] S.H. Mousavi Anijdan, M. Sabzi, J. Mater. Eng. Perform. 27 (10), 5246-5253 (2018).
  • [18] U. Gürol, S.C Kurnaz, J. Min. Metall. Sect. B. 56 (2), 171-182 (2020).
  • [19] N. Popova, T. Dement, E. Nikonenko, I. Kurzina, E. Kozlov, AIP Conference Proceedings, (2017).
  • [20] R. Fadhila, A.G. Jaharah, M.Z. Omar, C.H.C. Haron, M.J. Ghazali, A. Manaf, C.H. Azhari, Int. J. Mech. Mater. Eng. 2 (2), 150-153 (2007).
  • [21] C. Chen, B. Lv, H. Ma, D. Sun, F. Zhang, Tribol. Int. 121, 389-399 (2018).
  • [22] O.E. Falodun, S.R. Oke, A.M. Okoro, P.A. Olubambi, Mater. Today-Pro. 28, 730-733 (2020).
  • [23] S. Ayadi, A. Hadji, Inter Metalcast (2020). DOI: https://doi.org/10.1007/S40962-020-00479-2 (in press).
  • [24] K. Vdovin, A. Pesin, N. Feoktistov, D. Gorlenko, Metal. 8 (10), 845 (2018).
  • [25] J. Safarian, L. Kolbeinsen, In 13th International Ferro-Alloys Congress, Almaty, Kazakhstan, 175-183 (2013).
  • [26] C. Okechukwu, A.D. Olurotimi, K.O. Peter, O.O. Isiaka, D. Mohammed, Int. J. Eng. Tech. 3 (2), 83-90 (2017).
  • [27] M. Sabzi, S.M. Far, S.M. Dezfuli, Int. J. Miner. Metall. Mater. 25 (12), 1431-1438 (2018).
  • [28] H.R. Jafarian, M. Sabzi, S.H.M. Anijdan, A.R. Eivani, N. Park, J. Mater. Res. Technol. 10, 819-831 (2020).
  • [29] D. Gorlenko, K. Vdovin, N. Feoktistov, China Foundry 6, 433-442 (2016).
  • [30] O.A. Zambrano, G. Tressia, R.M. Souza, Eng. Fail. Anal. 115, 104621 (2020).
  • [31] O. Çakır, E. Altan, Trends in the development of machinery and associated technology, 105-108 (2008).
  • [32] E. Kuljanic, M. Sortino, G. Totis, F. Prosperi, Scientific Proceedings IX International Congress “Machines, Technolоgies, Materials” 1, 131-134 (2012).
  • [33] J. Kopac, M. Cebron, F. Kosel, J. Ach. Mate. Manuf. Eng. 55 (1), 80-89 (2012).
  • [34] V. Jankauskas, R. Choteborsky, M. Antonov, E. Katinas, 39 (1), 78-84 (2018).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-867c91c8-08ad-4144-b395-293c89bc207d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.