Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Current trends in organic synthesis as well as in chemistry education highlight the principles of Green chemistry and call for new synthetic procedures that conform to the actual ecological and economic requirements according to the Green deal and other global challenges. This includes, for instance, replacement of aggressive and toxic reagents, optimisation of synthetic protocols to achieve the highest possible yields within the shortest reaction times, lowering the reaction temperature, solvent recycling and waste minimisation. Considering the present technological advances, replacement of classical heating by microwave irradiation turns out to be an important tool of Green chemistry that permits significant reduction of the reaction time and increase of the yield under certain conditions. In chemistry education alike, several teaching experiments have also been reported in the latest literature to show advantages of the microwave-aided synthesis of various organic compounds or to elucidate basic chemical reactivity principles (e.g. direct carboxamide synthesis, aromatic sulphonation with rearrangement). In the present study, we design a Green chemistry education project focused on microwave-aided nitration of phenol by a set of inorganic metal nitrates (i.e. sodium nitrate, calcium nitrate, copper(II) nitrate, iron(III) nitrate) in concentrated acetic acid. These inquiry-based learning experiments proceed very easily, and the reaction conditions can be controlled to achieve the first, the second or even the third degree of nitration. Along with a necessary minimum of chemistry knowledge and skills, the proposed educational experiments on microwave-aided synthesis encourage students to explore the influence of the inorganic nitrate structure on the phenol nitration products. The basic relationship between the properties of reactants and the course of this interesting organic reaction can be easily monitored by universal pH papers and thin-layer chromatography, and subsequently explained through inductive reasoning. As such, these student-centred experiments are suitable for implementation in inquiry-based chemistry education at universities or high schools oriented in natural sciences.
Czasopismo
Rocznik
Tom
Strony
65--83
Opis fizyczny
Bibliogr. 68 poz., rys., tab.
Twórcy
autor
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradecká 1285, 500 03 Hradec Králové, Czech Republic
autor
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradecká 1285, 500 03 Hradec Králové, Czech Republic
autor
- Department of Chemistry and Chemistry Education, Faculty of Education, Charles University, M.D. Rettigové 4, 116 39 Prague, Czech Republic
autor
- Department of Chemistry and Chemistry Education, Faculty of Education, Charles University, M.D. Rettigové 4, 116 39 Prague, Czech Republic
autor
- Department of Chemistry and Chemistry Education, Faculty of Education, Charles University, M.D. Rettigové 4, 116 39 Prague, Czech Republic
Bibliografia
- [1] Roll I, Wylie R. Evolution and revolution in artificial intelligence in education. Int J Artif Intell Educ. 2016;26:582-99. DOI: 10.1007/s40593-016-0110-3.
- [2] Jafari F, Keykha A. Identifying the opportunities and challenges of artificial intelligence in higher education: a qualitative study. J Appl Res High Educ. 2024;16:1228-45. DOI: 10.1108/JARHE-09-2023-0426.
- [3] Collins N, Stout D, Lim JP, Malerich JP, White JD, Madrid PB, et al. Fully automated chemical synthesis: toward the universal synthesizer. Org Process Res Dev. 2020;24:2064-77. DOI: 10.1021/acs.oprd.0c00143.
- [4] Song E, Xie Z, Bai W, Luan H, Ji B, Ning X, et al. Miniaturized electromechanical devices for the characterization of the biomechanics of deep tissue. Nat Biomed Eng. 2021;5:759-71. DOI: 10.1038/s41551-021-00723-y.
- [5] Liu J, Gao X, Jin H, Ren K, Guo J, Qiao L, et al. Miniaturized electromechanical devices with multi-vibration modes achieved by orderly stacked structure with piezoelectric strain units. Nat Commun. 2022;13:6567. DOI: 10.1038/s41467-022-34231-7.
- [6] Kotsis KT. Teaching physics in the kitchen: bridging science education and everyday life. EIKI J Eff Teach Methods. 2024;2. DOI: 10.59652/jetm.v2i1.109.
- [7] Ferreira JPM. How a soup bowl and a coffee cup cool down. Phys Educ. 2024;59:055020. DOI: 10.1088/1361-6552/ad6ac9.
- [8] Linkwitz M, Zidny R, Nida S, Seeger L, Belova N, Eilks I. Simple green organic chemistry experiments with the kitchen microwave for high school chemistry classrooms. Chem Teach Int. 2022;4:165-72. DOI: 10.1515/cti-2021-0034.
- [9] Cresswell SL, Haswell SJ. Microwave ovens - out of the kitchen. J Chem Educ. 2001;78:900. DOI: 10.1021/ed078p900.
- [10] Villemin D, Thibault-Starzyk F. Domestic microwave ovens in the laboratory. J Chem Educ. 1991;68:346. DOI: 10.1021/ed068p346.
- [11] Watkins KW. Heating in microwave ovens: An example of dipole moments in action. J Chem Educ. 1983;60:1043. DOI: 10.1021/ed060p1043.
- [12] Martin E, Kellen-Yuen C. Microwave-assisted organic synthesis in the organic teaching lab: A simple, greener wittig reaction. J Chem Educ. 2007;84:2004. DOI: 10.1021/ed084p2004.
- [13] Damkaci F, Dallas M, Wagner M. A microwave-assisted friedel-crafts acylation of toluene with anhydrides. J Chem Educ. 2013;90:390-2. DOI: 10.1021/ed200479n.
- [14] Baar MR. Research experience for the organic chemistry laboratory: A student-centered optimization of a microwave-enhanced Williamson ether synthesis and GC analysis. J Chem Educ. 2018;95:1235-7. DOI: 10.1021/acs.jchemed.7b00592.
- [15] Kappe CO, Dallinger D. The impact of microwave synthesis on drug discovery. Nat Rev Drug Discov. 2006;5:51-63. DOI: 10.1038/nrd1926.
- [16] Liu Z, Zhang L, Wang R, Poyraz S, Cook J, Bozack MJ, et al. Ultrafast microwave nano-manufacturing of fullerene-like metal chalcogenides. Sci Rep. 2016;6:22503. DOI: 10.1038/srep22503.
- [17] Nguyen PN, Nguyen GLN, Duong TAT, Le MPT, Nguyen LP, Kim J, et al. High-yield, fast, and green synthesis of acridine derivatives using a Co/C catalyst from rice husks with a microwave-assisted method. React Chem Eng. 2024;9:2034-49. DOI: 10.1039/D4RE00065J.
- [18] Perreux L, Loupy A, Volatron F. Solvent-free preparation of amides from acids and primary amines under microwave irradiation. Tetrahedron. 2002;58:2155-62. DOI: 10.1016/S0040-4020(02)00085-6.
- [19] Lima RN, Silva VR, Santos L de S, Bezerra DP, Soares MBP, Porto ALM. Fast synthesis of amides from ethyl salicylate under microwave radiation in a solvent-free system. RSC Adv. 2017;7:56566-74. DOI: 10.1039/C7RA11434F.
- [20] Wang XJ, Yang Q, Liu F, You QD. Microwave‐assisted synthesis of amide under solvent‐free conditions. Synth Commun. 2008. DOI: 10.1080/00397910701860372.
- [21] Zarecki AP, Kolanowski JL, Markiewicz WT. Microwave-assisted catalytic method for a green synthesis of amides directly from amines and carboxylic acids. Molecules. 2020;25:1761. DOI: 10.3390/molecules25081761.
- [22] McCullough T, Kubena K. Beauty or the beast: Nitration of phenol. J Chem Educ. 1990;67:801. DOI: 10.1021/ed067p801.
- [23] Zeegers PJ. Nitration of phenols: A two-phase system. J Chem Educ. 1993;70:1036. DOI: 10.1021/ed070p1036.
- [24] Bose AK, Ganguly SN, Manhas MS, Rao S, Speck J, Pekelny U, et al. Microwave promoted rapid nitration of phenolic compounds with calcium nitrate. Tetrahedron Lett. 2006;47:1885-8. DOI: 10.1016/j.tetlet.2006.01.094.
- [25] Yadav U, Mande H, Ghalsasi P. Nitration of phenols using Cu(NO3)2: Green chemistry laboratory experiment. J Chem Educ. 2012;89:268-70. DOI: 10.1021/ed100957v.
- [26] Jegstad KM. Inquiry-based chemistry education: A systematic review. Stud Sci Educ. 2024;60:251-313. DOI: 10.1080/03057267.2023.2248436.
- [27] Havlíček J, Myška K, Tejchman W, Karásková N, Doležal R, Maltsevskaya NV, et al. Microwave synthesis of sulfanilic acid. Chem-Didact-Ecol-Metrol. 2017;22:93-8. DOI: 10.1515/cdem-2017-0005.
- [28] Mycak M, Doležal R, Bílek M, Kolář K. Microwave-aided reactions of aniline derivatives with formic acid: Inquiry-based learning experiments. Chem-Didact-Ecol-Metrol. 2022;27:135-51. DOI: 10.2478/cdem-2022-0008.
- [29] Gawley RE. A proposal for (slight) modification of the hughes-ingold mechanistic descriptors for substitution reactions. Tetrahedron Lett. 1999;40:4297-300. DOI: 10.1016/S0040-4039(99)00780-7.
- [30] Esteves PM, de M. Carneiro JW, Cardoso SP, Barbosa AGH, Laali KK, Rasul G, et al. Unified mechanistic concept of electrophilic aromatic nitration: Convergence of computational results and experimental data. J Am Chem Soc. 2003;125:4836-49. DOI: 10.1021/ja021307w.
- [31] McMurry JE. Organická chemie (Organic Chemistry). Brno-Praha: VUTIUM-VŠCHT; 2007. ISBN: 9788021432918.
- [32] Smith MB. March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure. John Wiley Sons; 2020. ISBN: 9781119371809.
- [33] Ridd JH. Mechanism of aromatic nitration. Acc Chem Res. 1971;4:248-53. DOI: 10.1021/ar50043a003.
- [34] Johnstone AH. You can’t get there from here. J Chem Educ. 2010;87:22-9. DOI: 10.1021/ed800026d.
- [35] Hudlický M. Reactions of Organic Fluorine Compounds. In: Hudlický M, editor. Organic Fluorine Chemistry, Boston MA: Springer US; 1971. DOI: 10.1007/978-1-4615-8642-5_8.
- [36] Michael A, Carlson GH. On the Mechanism of the nitration process. J Am Chem Soc. 1935;57:1268-76. DOI: 10.1021/ja01310a028.
- [37] Mellor JM, Mittoo S, Parkes R, Millar RW. Improved nitrations using metal nitrate-sulfuric acid systems. Tetrahedron. 2000;56:8019-24. DOI: 10.1016/S0040-4020(00)00720-1.
- [38] Gillespie RJ, Millen DJ. Aromatic nitration. Q Rev Chem Soc. 1948;2:277-306. DOI: 10.1039/QR9480200277.
- [39] Vekariya RH, Patel HD. Selective nitration of phenolic compounds by green synthetic approaches. Synth Commun. 2014;44:2313-35. DOI: 10.1080/00397911.2014.896925.
- [40] Dinçtürk SH, Ridd J. Reactions of cerium( IV ) ammonium nitrate with aromatic compounds in acetonitrile. Part 2. Nitration; comparison with reactions of nitric acid. J Chem Soc Perkin Trans 2. 1982;0:965-9. DOI: 10.1039/P29820000965.
- [41] Jacoway J, Kumar GGKSN, Laali KK. Aromatic nitration with bismuth nitrate in ionic liquids and in molecular solvents: a comparative study of Bi(NO3)3·5H2O/[bmim][PF6] and Bi(NO3)3·5H2O/1,2-DCE systems. Tetrahedron Lett. 2012;53:6782-5. DOI: 10.1016/j.tetlet.2012.09.137.
- [42] Gao M, Ye R, Shen W, Xu B. Copper nitrate: a privileged reagent for organic synthesis. Org Biomol Chem. 2018;16:2602-18. DOI: 10.1039/C8OB00332G.
- [43] Trammell R, Rajabimoghadam K, Garcia-Bosch I. Copper-promoted functionalization of organic molecules: From biologically relevant Cu/O2 model systems to organometallic transformations. Chem Rev. 2019;119:2954-3031. DOI: 10.1021/acs.chemrev.8b00368.
- [44] Dou Y, Yin B, Zhang P, Zhu Q. Copper-catalyzed regioselective nitration and azidation of 1-naphthylamine derivatives via remote C-H activation. Eur J Org Chem. 2018;2018:4571-6. DOI: 10.1002/ejoc.201800912.
- [45] Sadhu P, Alla SK, Punniyamurthy T. Room-temperature Cu(II)-catalyzed chemo- and regioselective ortho-nitration of arenes via C-H functionalization. J Org Chem. 2015;80:8245-53. DOI: 10.1021/acs.joc.5b01021.
- [46] Menke JB. Nitrieren mit Nitraten. Recl Trav Chim Pays-Bas. 1925;44:141-9. DOI: 10.1002/recl.19250440209.
- [47] Hoggett JG, Moodie RB, Schofield K. The duality of mechanism for nitration in acetic anhydride. J Chem Soc Chem Commun. 1969:605-6. DOI: 10.1039/C29690000605.
- [48] Frogley BJ, Dalebrook AF, Wright LJ. Regioselective nitration and/or halogenation of iridabenzofurans through electrophilic substitution. Organometallics. 2016;35:400-9. DOI: 10.1021/acs.organomet.5b00981.
- [49] Steele BA, Zhang MX, Kuo IFW. Single-step mechanism for regioselective nitration of 9,10-BN-naphthalene with acetyl nitrate in the gas phase. J Phys Chem A. 2022;126:5089-98. DOI: 10.1021/acs.jpca.2c02124.
- [50] Eberson L, Radner F. Electron-transfer mechanisms in electrophilic aromatic nitration. Acc Chem Res. 1987;20:53-9. DOI: 10.1021/ar00134a002.
- [51] Olah GA, Ramaiah P, Prakash GKS. Electrophilic nitration of alkanes with nitronium hexafluorophosphate. Proc Natl Acad Sci. 1997;94:11783-5. DOI: 10.1073/pnas.94.22.11783.
- [52] Ganguly NC, Datta M, De P, Chakravarty R. Studies on regioselectivity of nitration of coumarins with cerium(IV) ammonium nitrate: Solid-state nitration of 6-hydroxy-coumarins on montmorillonite K-10 Clay support under microwave irradiation. Synth Commun. 2003;33:647-59. DOI: 10.1081/SCC-120015821.
- [53] Cornelis A, Laszlo P. Clay-supported copper(II) and iron(III) nitrates: Novel multi-purpose reagents for organic synthesis. Synth Ger. 1985;1985:909-18. DOI: 10.1055/s-1985-31382.
- [54] Balogh M, Pennetreau P, Hermecz I, Gerstmans A. Nitrogen bridgehead compounds. Part 78. Clay-supported iron(III) nitrate: a multifunctional reagent. Oxidation and nitration of nitrogen bridgehead compounds. J Org Chem. 1990;55:6198-202. DOI: 10.1021/jo00312a030.
- [55] Gigante B, Prazeres AO, Marcelo-Curto MJ, Cornelis A, Laszlo P. Mild and selective nitration by claycop. J Org Chem. 1995;60:3445-7. DOI: 10.1021/jo00116a034.
- [56] McElveen SR, Gavardinas K, Stamberger JA, Mohan RS. The discovery-oriented approach to organic chemistry. 1. Nitration of unknown organic compounds. An exercise in 1H NMR and 13C NMR spectrosopy for sophomore organic laboratories. J Chem Educ. 1999;76:535. DOI: 10.1021/ed076p535.
- [57] Wieder MJ, Barrows R. A nitration reaction puzzle for the organic chemistry laboratory. J Chem Educ. 2008;85:549. DOI: 10.1021/ed085p549.
- [58] Zakaria Z, Latip J, Tantayanon S. Organic chemistry practices for undergraduates using a small lab kit. Procedia - Soc Behav Sci. 2012;59:508-14. DOI: 10.1016/j.sbspro.2012.09.307.
- [59] Chen HJ, She JL, Chou CC, Tsai YM, Chiu MH. Development and application of a scoring rubric for evaluating students’ experimental skills in organic chemistry: An instructional guide for teaching assistants. J Chem Educ. 2013;90:1296-302. DOI: 10.1021/ed101111g.
- [60] Fishback V, Reid B, Schildkret A. Three modules incorporating cost analysis, green principles, and metrics for a sophomore organic chemistry laboratory. Green Chemistry Experiments in Undergraduate Laboratories, vol. 1233, Am Chem Soc; 2016. DOI: 10.1021/bk-2016-1233.ch003.
- [61] Kolář K. Reakce fenolu s oxidy dusíku na tenké vrstvě [Reaction of phenol with nitrogen oxides on thin layers]. Biol Chem Zeměp. 1998;7:124-5. ISSN 1210-3349.
- [62] Smith K, El-Hiti GA. Use of zeolites for greener and more para-selective electrophilic aromatic substitution reactions. Green Chem. 2011;13:1579-608. DOI: 10.1039/C0GC00689K.
- [63] Anastas P, Warner J. Green Chemistry: Theory and Practice. Oxford, New York: Oxford University Press; 2000. ISBN: 9780198506980.
- [64] Rodrigues GD, de Lemos LR, da Silva LHM, da Silva M do CH, Minim LA, Coimbra JS dos R. A green and sensitive method to determine phenols in water and wastewater samples using an aqueous two-phase system. Talanta. 2010;80:1139-44. DOI: 10.1016/j.talanta.2009.08.039.
- [65] Hao L, Ding G, Deming DA, Zhang Q. Recent advances in green synthesis of functionalized phenols from aromatic boronic compounds. Eur J Org Chem. 2019;2019:7307-21. DOI: 10.1002/ejoc.201901303.
- [66] Elumalai V, Hansen JH. A scalable and green one-minute synthesis of substituted phenols. RSC Adv. 2020;10:40582-7. DOI: 10.1039/D0RA08580D.
- [67] Ryan RM, Deci EL. Self-determination theory and the facilitation of intrinsic motivation, social development, and well-being. Am Psychol. 2000;55:68-78. DOI: 10.1037/0003-066X.55.1.68.
- [68] Vojíř K, Honskusová L, Rusek M, Kolář K. Nitrace aromatických sloučenin v badatelsky orientovaném vyučování (Aromatic compounds nitration in IBSE). Project-Based Education and other Activating Strategies in Science Education XVI. PBE 2018, Prague: Faculty of Education, Charles University; 2019. ISBN: 9788076030664.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-867b5488-1928-447d-b62b-10df4095c316
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.