Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
HMX/Viton A nanocomposites were prepared by a spray drying process using different processing parameters, which included the dry gas inlet temperature, the air flow rate, and the solution feed flow rate. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) were used to characterize the nanocomposites. The effects of the processing parameters on the morphology of the samples were investigated and are discussed. The thermal decomposition behaviour and impact sensitivity of the raw HMX and HMX/Viton A nanocomposites were also measured and compared. Optimal morphology and dispersion of the coated samples was achieved when the dry gas inlet temperature and the air and solution feed flow rates were 55 °C, 660 L/h and 1.5 mL/min, respectively. Under these optimal processing conditions, the nanocomposites were spherical in shape, ranged from 0.2-2 μm in size, and were composed of many tiny particles of 50-100 nm in size. The crystal phase of the nanocomposites was the same as that of raw HMX. Compared with those of raw HMX, the melting point and impact sensitivity of the nanocomposites were lower and the thermal decomposition rate was slightly higher.
Słowa kluczowe
Rocznik
Tom
Strony
487--495
Opis fizyczny
Bibliogr. 20 poz., rys., tab.
Twórcy
autor
- Shuozhou, North University of China, Shuozhou Shanxi, 030051, P. R. China
autor
- Xi’an Modern Chemistry Research Institute, Xi’an Shanxi, 710065, P. R.China
autor
- Chemical Industry and Ecology Institute, North University of China, Taiyuan Shanxi, 030051, P. R. China
autor
- Chemical Industry and Ecology Institute, North University of China, Taiyuan Shanxi, 030051, P. R. China
autor
- Chemical Industry and Ecology Institute, North University of China, Taiyuan Shanxi, 030051, P. R. China
autor
- Chemical Industry and Ecology Institute, North University of China, Taiyuan Shanxi, 030051, P. R. China
autor
- Chemical Industry and Ecology Institute, North University of China, Taiyuan Shanxi, 030051, P. R. China
Bibliografia
- [1] Wang J. Y., Huang H., Xu W. Z., Zhang Y. R., Lu B., Xie R.Z., Wang P., Yun N., Prefilming Twin-fluid Nozzle Assisted Precipitation Method for Preparing Nanocrystalline HNS and Its Characterization, J. Hazard. Mater., 2009, 162(2-3), 842-847.
- [2] Bayat Y., Zeynali V., Preparation and Characterization of Nano-CL-20 Explosive, J. Energ. Mater., 2011, 29(4), 281-291.
- [3] Li J., Brill T.B., Nanostructured Energetic Composites of CL-20 and Binders Synthesized by Sol Gel Methods, Propellants Explos. Pyrotech., 2006, 31(1), 61-69.
- [4] Shokrolahi A., Zali A., Mousaviazar A., Keshavarz M.H., Hajhashemi H., Preparation of Nano-K-6 (Nano-Keto RDX) and Determination of Its Characterization and Thermolysis, J. Energ. Mater., 2011, 29(2), 115-126.
- [5] Naya T., Kohga M., Influences of Particle Size and Content of HMX on Burning Characteristics of HMX-based Propellant, Aerosp. Sci. Technol., 2013, 27(1), 209-215.
- [6] Naya T., Kohga M., Influences of Particle Size and Content of HMX on Burning Characteristics of RDX-based Propellant, Aerosp. Sci. Technol., 2014, 32(1), 26-34.
- [7] Zohari N., Keshavarz M.H., Seyedsadjadi S.A., The Advantages and Shortcomings of Using Nano-sized Energetic Materials, Cent. Eur. J. Energ. Mater., 2013, 10(1), 135-147.
- [8] Patrick L., New-generation DuPont Dow Fluoroelastomers: Viton Fluoroelastomer Made with Advanced Polymer Architecture, Sealing Technology, 2004, 5, 6-9.
- [9] Craig M.T., Paul A.U., Steven K.C., Leroy G.G., Shock Compression and Initiation of LX-10, Propellants Explos. Pyrotech., 1993, 18(3), 117-127.
- [10] Sivabalan R., Gore G.M., Nair U.R., Saikia A., Venugopalan S., Gandhe B.R., Study on Ultrasound Assisted Precipitation of CL-20 and Its Effect on Morphology and Sensitivity, J. Hazard. Mater., 2007, 139(2), 199-203.
- [11] Degirmenbasi N., Peralta-Inga Z., Olgun U., Gocmez H., Kalyon D.M., Recrystallization of CL-20 and HNFX from Solution for Rigorous Control of the Polymorph Type: Part II, Experimental Studies, J. Energ. Mater., 2006, 24(2), 103-139.
- [12] Zhigach A.N., Leipunskii I.O., Berezkina N.G., Pshechenkov P.A., Zotova P.A., Kudrov B.V., Gogulya M.F., Brazhnikov M.A., Kuskov M.L., Aluminized Nitramine-based Nanocomposites: Manufacturing Technique and Structure Study, Combust., Expl. Shock Waves. (Engl. Transl.), 2009, 45(6), 666-677.
- [13] Qiu H.W., Stepanov V., Di Stasio A.R., Chou T.M., Lee W.Y., RDX-based Nanocomposite Microparticles for Significantly Reduced Shock Sensitivity, J. Hazard. Mater., 2011, 185(1), 489-493.
- [14] An C.W., Li H.Q., Geng X.H., Li J.L., Wang J.Y., Preparation and Properties of 2,6-Diamino-3,5- dinitropyrazine-1-oxide based Nanocomposites, Propellants Explos. Pyrotech., 2013, 38(2), 172-175.
- [15] Qiu H.W., Stepanov V., Chou T., Surapaneni A., Di Stasio A.R., Lee W.Y., Singlestep Production and Formulation of HMX Nanocrystals, Powder Technol., 2012, 226, 235-238.
- [16] Shi X.F., Wang J.Y., Li X.D., An C.W., Preparation and Characterization of HMX/ Estane Nanocomposites, Cent. Eur. J. Energ. Mater., 2014, 11(3), 433-442.
- [17] Levesque G., Vitello P., Howard W.M., Hot-spot Contributions in Shocked High Explosives from Mesoscale Ignition, J. Appl. Phys., 2013, 113(23), 233513.
- [18] Li T., Hua C., Li Q., Shock Sensitivity of Pressed RDX-based Plastic Bonded Explosives under Short-duration and High-pressure Impact Tests, Propellants Explos. Pyrotech., 2013, 38(6), 770-774.
- [19] LaBarbera D.A., Zikry M.A., The Effects of Microstructural Defects on Hot Spot Formation in Cyclotrimethylenetrinitramine-polychlorotrifluoroethylene Energetic Aggregates, J. Appl. Phys., 2013, 113(24), 243502.
- [20] Yang G.C., Nie F.D., Huang H., Preparation and Characterization of Nano-TATB Explosive, Propellants Explos. Pyrotech., 2006, 31(5), 390-394.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-867ab084-92b0-4633-afa1-60473e5ba496