PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Use of integrated AHP-topsis method in selection of optimum mine planning for open-pit mines

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Successful mine planning is necessary for the sustainability of mining activities. Since this process depends on many criteria, it can be considered a multi-criteria decision making (MCDM) problem. In this study, an integrated MCDM method based on the combination of the analytic hierarchy process (AHP) and the technique for order of preference by similarity to the ideal solution (TOPSIS) is proposed to select the optimum mine planning in open-pit mines. To prove the applicability of the proposed method, a case study was carried out. Firstly, a decision-making group was created, which consists of mining, geology, planning engineers, investors, and operators. As a result of studies performed by this group, four main criteria, thirteen sub-criteria, and nine mine planning alternatives were determined. Then, AHP was applied to determine the relative weights of evaluation criteria, and TOPSIS was performed to rank the mine planning alternatives. Among the alternatives evaluated, the alternative with the highest net present value was selected as the optimum mine planning alternative. It has been determined that the proposed integrated AHP-TOPSIS method can significantly assist decision-makers in the process of deciding which of the few mine planning alternatives should be implemented in open-pit mines.
Rocznik
Strony
35--53
Opis fizyczny
Bibliogr. 69 poz., rys., tab., wykr.
Twórcy
  • Çukurova University, Department of Mining Engineering, 01250, Adana, Turkey
Bibliografia
  • [1] P.A. Nesbitt, Optimization-based procedures for underground mine planning. Colorado School of Mines. Arthur Lakes Library. (2020). https://hdl.handle.net/11124/174174.
  • [2] P. Nancel-Penard, A. Parra, N. Morales, C. Díaz, E. Widzyk-Capehart, Value-Optimal design of ramps in open pit mining. Arch. Min. Sci. 64 (2), 399-413 (2019). DOI: https://doi.org/10.24425/ams.2019.128691.
  • [3] N. Morales, S. Seguel, A. Cáceres, E. Jélvez, M. Alarcón, Incorporation of geometallurgical attributes and geological uncertainty into long-term open-pit mine planning. Minerals 9 (2), 108 (2019). DOI: https://doi.org/10.3390/min9020108.
  • [4] W. Xing, W. Huang, F. Feng, Research on application of strip backfilling mining technology – A case study. Arch. Min. Sci. 54 (4), 595-609 (2021). DOI: https://doi.org/10.24425/ams.2021.139599.
  • [5] M. Krzak, P. Panajew, Qualitative description of metal ore deposits parameters based on selected fuzzy logic operators on the example of a KGHM Polish Copper S.A. Copper-Silver Mine. Arch. Min. Sci. 64 (2), 261-277 (2019). DOI: https://doi.org/10.24425/ams.2019.128682.
  • [6] M. Deutsch, Open-Pit mine optimization with maximum satisfiability. Mining Metall. Explor. 36, 757-764 (2019). DOI: https://doi.org/10.1007/s42461-019-0062-x.
  • [7] I. Hezaimia, M.L. Boukelloul, C. Merah, Y. Berrah, A. Hamdane, Z. Benghazi, I. Kahoul, Selection of new appropriate mining method: case of Boukhadra iron ore mine, NE Algeria. Arab. J. Geosci. 12 (17), 8503-8514 (2019). DOI: https://doi.org/10.1007/s12517-019-4641-4
  • [8] J. Githiria, Review of mathematical models applied in open-pit mining. In: Topal, E. (eds) Proceedings of the 28th International Symposium on Mine Planning and Equipment Selection – MPES 2019. MPES 2019. Springer Series in Geomechanics and Geoengineering. Springer, Cham. (2020). DOI: https://doi.org/10.1007/978-3-030-33954-8_10.
  • [9] A. Maremi, E. Ben-Awuah, H. Askari-Nasab, Multi-objective mathematical programming framework for integrated oil sands mine planning and tailings disposal optimization. Mining Metall. Explor. 38, 1355-1374 (2021). DOI: https://doi.org/10.1007/s42461-021-00418-7.
  • [10] E. Kozan, S.Q. Liu, Operations research for mining: a classification and literature review. ASOR Bulletin 30 (1), 2-23 (2011).
  • [11] V.D. Baloyi, L.D. Meyer, The development of a mining method selection model through a detailed assessment of multi-criteria decision methods. Results Eng. 8, 100172 (2020). DOI: https://doi.org/10.1016/j.rineng.2020.100172.
  • [12] A. Majumdar, B. Sarkar, P.K. Majumdar, Determination of quality value of cotton fibre using hybrid AHP-TOPSIS method of multi-criteria decision-making. J. Text. Inst. 96 (5), 303-309 (2005). DOI: https://doi.org/10.1533/joti.2005.0013.
  • [13] I. Linkov, P. Welle, D. Loney, A. Tkachuk, L. Canis, J.B. Kim, T. Bridges, Use of multicriteria decision analysis to support weight of evidence evaluation. Risk Anal. 31 (8), 1211-1225 (2011). DOI: https://doi.org/10.1111/j.1539-6924.2011.01585.x.
  • [14] H. Çalişkan, B. Kurşuncu, C. Kurbanoğlu, Ş.Y. Güven, Material selection for the tool holder working under hard milling conditions using different multi criteria decision making methods. Mater. Des. 45, 473-479 (2013). DOI: https://doi.org/10.1016/j.matdes.2012.09.042.
  • [15] E.K. Zavadskas, R. Baušys, D. Stanujkic, M. Magdalinovic-Kalinovic, Selection of lead-zinc flotation circuit design by applying WASPAS method with single-valued neutrosophic set. Acta Montan. Slovaca. 21 (2), 85-92 (2016).
  • [16] F. Sitorus, J.J. Cilliers, P.R. Brito-Parada, Multi-criteria decision making for the choice problem in mining and mineral processing: Applications and trends. Expert Syst. Appl. 121, 393-417 (2019). DOI: https://doi.org/10.1016/j.eswa.2018.12.001.
  • [17] A. Mardani, A. Jusoh, K. MD Nor, Z. Khalifah, N. Zakwan, A. Valipour, Multiple criteria decision-making techniques and their applications – a review of the literature from 2000 to 2014. Econ. Res-Ekon. Istraž. 28 (1), 516-571 (2015). DOI: https://doi.org/10.1080/1331677X.2015.1075139.
  • [18] W. Ying, L. Yan-Ping, Research on the evaluation and selection of partner in logistics strategic alliance based on AHP-TOPSIS. 2007 International Conference on Management Science and Engineering, IEEE. 947-952 (2007). DOI: https://doi.org/10.1109/ICMSE.2007.4421968.
  • [19] H. Karahalios, The application of the AHP-TOPSIS for evaluating ballast water treatment systems by ship operators. Transp. Res. D Transp. Environ. 52, 172-184 (2017). DOI: https://doi.org/10.1016/j.trd.2017.03.001.
  • [20] A. Dinmohammadi, M. Shafiee, Determination of the most suitable technology transfer strategy for wind turbines using an integrated AHP-TOPSIS decision model. Energies 10 (5), 642 (2017). DOI: https://doi.org/10.3390/en10050642.
  • [21] V. Belton, T. Stewart, Multiple criteria decision analysis an integrated approach. Springer New York NY. (2002).
  • [22] M.S.A. Osman, G. Eldin, H.A. Khalifa, On a hybrid approach for treating multi-criteria decision making problems. Int. J. Comput. Appl. 145, 49-57 (2016). DOI: https://doi.org/10.5120/IJCA2016910684.
  • [23] W.W. Wu, Choosing knowledge management strategies by using a combined ANP and DEMATEL approach. Expert Syst. Appl. 35 (3), 828-835 (2008). DOI: https://doi.org/10.1016/j.eswa.2007.07.025.
  • [24] E.K. Zavadskas, K. Govindan, J. Antucheviciene, Z. Turskis, Hybrid multiple criteria decision-making methods: a review of applications for sustainability issues. Econ. Res-Ekon. Istraž. 29 (1), 857-887 (2016). DOI: https://doi.org/10.1080/1331677X.2016.1237302.
  • [25] J. Brodny, M. Tutak, Assessing sustainable energy development in the central and eastern European countries and analyzing its diversity. Sci. Total Environ. 801, 149745 (2021). DOI: https://doi.org/10.1016/j.scitotenv.2021.149745.
  • [26] E.K. Zavadskas, J. Antucheviciene, Z. Turskis, H. Adeli, Hybrid multiple-criteria decision-making methods: A review of applications in engineering. Sci. Iran. Transactions A, Civil Engineering 23 (1), 1-20 (2016).
  • [27] M.J. Mahase, C. Musingwini, A.S. Nhleko, A survey of applications of multi-criteria decision analysis methods inmine planning and related case studies. J. South. Afr. Inst. Min. Metall. 1116 (11), 1051-1056 (2016).
  • [28] F.S. Namin, A. Ghadi, F. Saki, A literature review of multi criteria decision-making (MCDM) towards mining method selection (MMS). Resour. Policy 77, 102676 (2022). DOI: https://doi.org/10.1016/j.resourpol.2022.102676.
  • [29] A.A. Bazzazi, M. Osanloo, H. Soltanmohammadi, Loading-haulage equipment selection in open pit mines based on fuzzy-TOPSIS method. Gospod. Surowcami Min. 24, 87-102 (2008).
  • [30] F.S. Namin, K. Shahriar, M. Ataee-Pour, H. Dehghani, A new model for mining method selection of mineral deposit based on fuzzy decision making. J. South. Afr. Inst. Min. Metall. 108 (7), 385-395 (2008).
  • [31] A. Karadogan, A. Kahriman, U. Ozer, Application of fuzzy set theory in the selection of underground mining method. J. South. Afr. Inst. Min. Metall. 108 (2), 73-79 (2008).
  • [32] A.A. Bazzazi, M. Osanloo, B. Karimi, Optimal open pit mining equipment selection using fuzzy multiple attribute decision making approach. Arch. Min. Sci. 54 (2), 301-320 (2009).
  • [33] M. Golestanifar, A.A. Bazzazi, TISS: a decision framework for tailing impoundment site selection. Environ. Earth Sci. 61, 1505-1513 (2010). DOI: https://doi.org/10.1007/s12665-010-0466-x.
  • [34] A. Azadeh, M. Osanloo, M. Ataei, A new approach to mining method selection based on modifying the Nicholas technique. Appl. Soft Comput. 10 (4), 1040-1061 (2010). DOI: https://doi.org/10.1016/j.asoc.2009.09.002.
  • [35] A.A. Bazzazi, M. Osanloo, B. Karimi, Deriving preference order of open pit mines equipment through MADM methods: Application of modified VIKOR method. Expert Syst. Appl. 38 (3), 2550-2556 (2011). DOI: https://doi.org/10.1016/j.eswa.2010.08.043.
  • [36] D. Bogdanovic, D. Nikolic, I. Ilic, Mining method selection by integrated AHP and PROMETHEE method. An. Acad. Bras. Ciênc. 84 (1), 219-233 (2012). DOI: https://doi.org/10.1590/S0001-37652012000100023.
  • [37] S. Shariati, A. Yazdani-Chamzini, B.P. Bashari, Mining method selection by using an integrated model. Int. Res. J. Appl. Basic Sci. 6 (2), 199-214 (2013).
  • [38] M. Yari, M. Monjezi, R. Bagherpour, Selecting the most suitable blasting pattern using AHP–TOPSIS method: Sungun copper mine. J. Min. Sci. 49 (6), 967-975 (2013). DOI: https://doi.org/10.1134/S1062739149060178.
  • [39] M. Ataei, H. Shahsavany, R. Mikaeil, Monte Carlo analytic hierarchy process (MAHP) approach to selection of optimum mining method. Int. J. Min. Sci. Technol. 23 (4), 573-578 (2013). DOI: https://doi.org/10.1016/j.ijmst.2013.07.017.
  • [40] R.A. Adebimpe, J.M. Akande, C. Arum, Mine equipment selection for Ajabanoko iron ore deposit, Kogi state, Nigeria. Science Research 1 (2), 25-30 (2013). DOI: https://doi.org/10.11648/j.sr.20130102.13.
  • [41] C. Wang, S. Tu, Selection of an appropriate mechanized mining technical process for thin coal seam mining. Math. Probl. Eng. 2015, 893232 (2015). DOI: https://doi.org/10.1155/2015/893232.
  • [42] C. Wang, S. Tu, L. Zhang, Q. Yang, H. Tu, Auxiliary transportation mode in a fully-mechanized face in a nearly horizontal thin coal seam. Int. J. Min. Sci. Technol. 25 (6), 963-968 (2015). DOI: https://doi.org/10.1016/j.ijmst.2015.09.013.
  • [43] C. Stojanovic, D. Bogdanovic, S. Urosevic, Selection of the optimal technology for surface mining by multi-criteria analysis. Kuwait J. Sci. 42 (3), 170-190 (2015).
  • [44] K. Pazand, A. Hezarkhani, Porphyry Cu potential area selection using the combine AHP-TOPSIS methods: A case study in Siahrud area (NW, Iran). Earth Sci. Inform. 8, 207-220 (2015). DOI: https://doi.org/10.1007/s12145-014-0153-7.
  • [45] M.A. Ghasvareh, M. Safari, M. Nikkhah, Haulage system selection for parvadeh coal mine using multi-criteria decision making methods. Mining Science 26, 69-89 (2019). DOI: https://doi.org/10.37190/msc192606.
  • [46] T.L. Saaty, A scaling method for priorities in hierarchical structures. J. Math. Psychol. 15 (3), 234-281 (1977). DOI: https://doi.org/10.1016/0022-2496(77)90033-5.
  • [47] T.L. Saaty, The analytic hierarchy process, McGraw-Hill:New York, NY, USA. (1980).
  • [48] M. Tavana, A. Hatami-Marbini, A group AHP-TOPSIS framework for human spaceflight mission planning at NASA. Expert Syst. Appl. 38 (11), 13588-13603 (2011). DOI: https://doi.org/10.1016/j.eswa.2011.04.108.
  • [49] N. Asgari, A. Hassani, D. Jones, H.H. Nguye, Sustainability ranking of the UK major ports: methodology and case study. Transport. Res. E-Log. 78, 1-39 (2015). DOI: https://doi.org/10.1016/j.tre.2015.01.014.
  • [50] Z.L. Yang, S. Bonsall, J. Wang, Approximate TOPSIS for vessel selection under uncertain environment. Expert Syst. Appl. 38 (12), 14523-14534 (2011). DOI: https://doi.org/10.1016/j.eswa.2011.05.032.
  • [51] H. Veisi, H. Liaghati, A. Alipour, Developing an ethics-based approach to indicators of sustainable agriculture using analytic hierarchy process (AHP). Ecol. Indic. 60, 644-654 (2016). DOI: https://doi.org/10.1016/j.ecolind.2015.08.012.
  • [52] S. Karapetrovic, E.S. Rosenbloom, A quality control approach to consistency paradoxes in AHP. Eur. J. Oper. Res. 119 (3), 704-718 (1999). DOI: https://doi.org/10.1016/S0377-2217(98)00334-8.
  • [53] M. Kwiesielewicz, E.V. Uden, Inconsistent and contradictory judgements in pairwise comparison method in the AHP. Comput. Oper. Res. 31 (5), 713-719 (2004). DOI: https://doi.org/10.1016/S0305-0548(03)00022-4.
  • [54] H.K. Chang, J.C. Liou, W.W. Chen, Protection priority in the coastal environment using a hybrid AHP-TOPSIS method on the Miaoli coast, Taiwan. J. Coast. Res. 28 (2), 369-374 (2012).
  • [55] T.L. Saaty, How to make a decision: the analytic hierarchy process. Eur. J. Oper. Res. 48 (1), 9-26 (1990). DOI: https://doi.org/10.1016/0377-2217(90)90057-I.
  • [56] C.L. Hwang, K. Yoon, Multiple attribute decision making: Methods and applications a state-of-the-art survey. Springer Berlin, Heidelberg. (1981).
  • [57] K. Yoon, A reconciliation among discrete compromise solutions. J. Oper. Res. Soc. 38 (3), 277-286 (1987). DOI: https://doi.org/10.1057/jors.1987.44.
  • [58] C.L. Hwang, Y.J. Lai, T.Y. Liu, A new approach for multiple objective decision making. Comput. Oper. Res. 20(8), 889-899 (1993). DOI: https://doi.org/10.1016/0305-0548(93)90109-V.
  • [59] M. Momeni, M.H. Maleki, M.A. Afshari, J.S. Moradi, J. Mohammadi, A fuzzy MCDM approach for evaluating listed private banks in Tehran stock exchange based on balanced scorecard. Int. J. Bus. Adm. 2 (1), 80-97 (2011). DOI: https://doi.org/10.5430/ijba.v2n1p80.
  • [60] O. Taylan, M.R. Kabli, M. Saeedpoor, A. Vafadarnikjoo, Commentary on construction projects selection and risk assessment by fuzzy AHP and fuzzy TOPSIS methodologies. Appl. Soft Comput. 36, 419-421 (2015). DOI: https://doi.org/10.1016/j.asoc.2015.05.051.
  • [61] A.I. Ölçer, J. Majumder, A case-based decision support system for flooding crises onboard ships. Qual. Reliab. Eng. Int. 22 (1), 59-78 (2006). DOI: https://doi.org/10.1002/qre.748.
  • [62] G.R. Jahanshahloo, F. Hosseinzadeh Lotfi, M. Izadikhah, An algorithmic method to extend TOPSIS for decisionmaking problems with interval data. Appl. Math. Comput. 175 (2), 1375-1384 (2006). DOI: https://doi.org/10.1016/j.amc.2005.08.048.
  • [63] G.H. Tzeng, J.J. Huang, Multiple attribute decision making: Methods and applications. Chapman and Hall/CRC. (2011).
  • [64] C.B. Güllüdağ, N. Ünal Kartal, Comparison of the distribution of environmentally hazardous elementsin coal with Kriging and IDW methods (Tekirdağ-Malkara Coalfield). JSR-A, 50, 44-67 (2022).
  • [65] R. Rooki, M. N. Mohammadi, M. Safari, Reserve estimation of IV deposit of Sangan Iron ore mine using geostatistical method and SURPAC software. J. Min. Eng. 17 (56), 21-39 (2022). DOI: https://doi.org/10.22034/ijme.2022.537596.1879.
  • [66] A. Alipour, A.A. Khodaiari, A. Jafari, R. Tavakkoli-Moghaddam, An integrated approach to open-pit mines production scheduling, Resour. Policy 75, 102459, (2022). DOI: https://doi.org/10.1016/j.resourpol.2021.102459.
  • [67] E. Ben-Awuah, O. Richter, T. Elkington, Y. Pourrahimian, Strategic mining options optimization: Open pit mining, underground mining or both. Int. J. Min. Sci. Technol. 26 (6), 1065-1071 (2016). DOI: https://doi.org/10.1016/j.ijmst.2016.09.015.
  • [68] B. Roberts, T. Elkington, K. van Olden, M. Maulen, Optimizing combined open pit and underground strategic plan. Min. Technol. 122 (2), 94-100 (2013). DOI: https://doi.org/10.1179/1743286313Y.0000000038.
  • [69] R. Epstein, M. Goic, A. Weintraub, J. Catalán, P. Santibáñez, R. Urrutia, R. Cancino, S. Gaete, A. Aguayo, F. Caro, Optimizing long-term production plans in underground and open-pit copper mines. Oper. Res. 60 (1), 4-17 (2012). DOI: https://doi.org/10.1287/opre.1110.1003.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-867a4621-a082-4581-85e9-6c283857bc51
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.