Tytuł artykułu
Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Modeling of liquid flow through the porous materials of different microstructure
Języki publikacji
Abstrakty
W pracy przedstawiono sformułowania modeli transportu w ośrodku porowatym w skali mikro i makro. Jako model mikro ośrodka porowatego przyjęto układ nieruchomych kul reprezentujący ziarna, o rozkładzie dwumodalnym. Na podstawie obliczeń w skali mikro, stosując stacjonarne równanie Stokesa dla cieczy nieściśliwej, wyznaczono maksymalne prędkości oraz przepływy dla poszczególnych mikrostruktur w funkcji promienia małego ziarna oraz porowatości. Obliczono również krętość poszczególnych mikrostruktur. Przedstawiono metodę wyznaczania przepuszczalności układu, która jest uśrednionym parametrem opisującym ośrodek porowaty w skali makro. Zaprezentowana metoda może być stosowana w modelowaniu procesów transportu dla materiałów o rzeczywistej mikrostrukturze.
In the paper authors present the formulation of transport models in porous medium in both micro and macro scale. System of spheres, representing grains, with bimodal radius distribution were used as a model of porous medium in micro scale. Based on calculation in micro scale, using stationary Stokes' equation for incompressible fluid, the maximum velocity and flows were calculated for each microstructure as a function of small grains size as well as porosity. Tortuosity for each microstructure was also calculated. Method for permeability determination, which is an average parameter describing porous medium in macro scale, was presented. Presented method might find application in modelling of transport for materials with real microstructure.
Wydawca
Czasopismo
Rocznik
Tom
Strony
489--506
Opis fizyczny
Bibliogr. 36 poz., il., tab.
Twórcy
autor
- Faculty of Materials Science and Ceramics, The Department of Physical Chemistry and Modelling, AGH University of Science and Technology
autor
- Faculty of Materials Science and Ceramics, The Department of Physical Chemistry and Modelling, AGH University of Science and Technology
Bibliografia
- 1. E. Lacoste, O. Mantaux, M. Danis, Numerical simulation of metal matrix composites and polymer matrix composites processing by infiltration: a review. Compos Part A., 33, 1605–1614 (2002).
- 2. C. Chang, Simulation of molten metal through a unidirectional fibrous preform during MMC processing, Journal of Materials Processing Technology, 209, 4337–4342 (2009)
- 3. L. Bertolini, M. Gastaldi, M. Pedeferri, E. Redaelli, Prevention of steel corrosion in concrete exposed to seawater with submerged sacrificial anodes. Corossion Science, 44, 1497–1513 (2002).
- 4. S. Kranc, Computation of Reinforcing Steel Corrosion Distribution in Concrete Marine Bridge Substructures, Corossion, 50, 50-61 (1994).
- 5. T. Kaneko, J. Bennett, S. Sridhar, Effect of Temperature Gradient on Industrial Gasifier Coal Slag, J. Am Ceram. Soc., 94, 4507–4515 (2011).
- 6. J. Walton, Fluid flow and placement of concrete vaults in the saturated or unsaturated zone, Waste Manegment, 11, 3-10 (1991).
- 7. M. Chaparro, J. Soler, M. Saaltink, U. Mäder, Reactive Transport Models of a High-pH Infiltration Test in Concrete, Phys Chem Earth (2017).
- 8. K. Vafai, Handbook of Porous Media. Third Edition, CRC Press, 2015.
- 9. M. Rappaz, M. Bellet, M. Deville, Numerical Modeling in Materials Science and Engineering, Springer 2010.
- 10. L. Landau, J. Lifszyc, Hydrodynamika, Wydawnictwo Nauokowe PWN, 2009.
- 11. S. Whitaker, Flow in Porous Media I: A Theorical Derivation of Darcy’s Law. Vol. 1, Transport in Porous Media, 1, 3–25 (1986).
- 12. H. Brinkman, A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles, Appl Sci Res, 2, 155–161 (1951).
- 13. M. Sahimi, Flow and Transport in Porous Media and Fractured Rock, Wiley, 2011.
- 14. R. Cook, K. Hover, Mercury porosimetry of hardened cement pastes. Cem Concr Res., 22, 933–943 (1999).
- 15. C. Leon, New perspectives in mercury porosimetry, Adv Colloid Interface Sci., 76–77, 341–372 (1998).
- 16. W. Martin, B. Putman, N. Kaye, Using image analysis to measure the porosity distribution of a porous pavement, Constr Build Mater, 48, 210-217 (2013).
- 17. B. Münch, L. Holzer, Contradicting geometrical concepts in pore size analysis attained with electron microscopy and mercury intrusion, J Am Ceram Soc, 91, 4059–4067 (2008).
- 18. G. Brown, Henry Darcy and the making of a law, Water Resour Res., 38, 1–12 (2002).
- 19. G. Rajesh, R. Bhagat, Infiltration of liquid metals in porous compacts: Modeling of permeabilities during reactive melt infiltration, Transport in Porous Media, 36, 43–68 (1999).
- 20. R. Vallabh, P. Banks-lee, A. Seyam, New Approach for Determining Tortuosity in Fibrous Porous Media, J Eng Fiber Fabr, 5, 7–15 (2010).
- 21. B. Yu, J. Li, A Geometry Model for Tortuosity of Flow Path in Porous Media, Chinese Phys Lett, 21, 1569–1571 (2004).
- 22. M. Yun, B. Yu, B. Zhang, M. Huang, A Geometry Model for Tortuosity of Streamtubes in Porous Media with Spherical Particles, Chinese Phys Lett, 22, 1464–1467 (2005).
- 23. J. Comiti, M. Renaud, A new model for determininig mean structure parameters of fixed beds from pressure drop measurements: application to beds packed with parallelepipedal particles, Chem Eng Sci., 44, 1539–1545 (1989).
- 24. Z. Fellah, M. Fellah, W. Lauriks, C. Depollier, Direct and inverse scattering of transient acoustic waves by a slab of rigid porous material, J Acoust Soc Am., 113, 61–72 (2014).
- 25. S. Rigby, L. Gladden, NMR and Fractal Modeling Studies of Transport in Porous Media, Chem Enguneering Sci., 51, 2263–2272 (1996).
- 26. S. Haskett, G. Narahara, S. Holditch, A method for simultaneous determination of permeability and porosity in low-permeability cores. SPE Form Eval, 3, 651–658 (1988).
- 27. P. Carman, Fluid flow through granular beds, Chem. Eng. Res. Des., 75, 32-48 (1932).
- 28. J. Katagiri, Y. Konno, J. Yoneda, N. Tenma, Pore-scale modeling of flow in particle packs containing grain-coating and pore-filling hydrates: Verification of a Kozeny–Carman-based permeability reduction model, J. Nat. Gas. Sci. Eng. (2017).
- 29. A. Costa, Permeability-porosity relationship: A reexamination of the Kozeny-Carman equation based on a fractal pore-space geometry assumption, Geophisical Res. Lett., 33, 1-5 (2006).
- 30. E. Rodriguez, F. Giacomelli, A. Vazquez, Permeability-Porosity Relationship in RTM for Different Fiberglass and Natural Reinforcements, J. Compos. Mater., 38, 259–68 (2004).
- 31. H. Hasimoto, On the periodic fundamental solutions of the Stokes equations and their application to viscous flow past a cubic array of spheres, J. Fluid. Mech., 5, 317-328 (1959).
- 32. A. Sangani, A. Acrivos, Slow flow past periodic arrays of cylinders with application to heat transfer, Int. J. Multiph. Flow., 8, 193–206 (1982).
- 33. B. Gebart, Permeability of Unidirectional Reinforcements for RTM, J. Compos Mater., 8, 1100–1133 (1992).
- 34. D. Clague, R. Phillips, A numerical calculation of the hydraulic permeability of three-dimensional disordered fibrous media, Phys. Fluids, 9, 1562-1572 (1997).
- 35. S. Zhang, M. Zhu, X. Zhao, D. Xiong, H. Wan, S. Bai, A pore-scale, two-phase numerical model for describing the infiltration behaviour of SiCp/Al composites, Compos. Part A, 90, 71-81 (2016).
- 36. D. Lide, CRC Handbook of Chemistry and Physics, CRC Press, 2008.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8676cdf4-dbc9-457e-a4d7-ecf7b2d3cf29