PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Surrogate synthesis of frame eddy current probes with uniform sensitivity in the testing zone

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
A mathematical method for nonlinear surrogate synthesis of frame surface eddy current probes providing a uniform eddy current density distribution in the testing object area is proposed. A metamodel of a frame movable eddy-current probe with a planar excitation system structure, used in the algorithm for surrogate optimal synthesis was created. The examples of a nonlinear synthesis of excitation systems with the application of the modern metaheuristic stochastic algorithms for finding the global extremum are considered. The numerical findings of the problem analyses are presented. The efficiency of the synthesized excitation structures was demonstrated on the basis of the eddy current density distribution graphs on the surface of the control zone of the object in comparison with classical analogues.
Rocznik
Strony
551--564
Opis fizyczny
Bibliogr. 25 poz., rys., tab., wykr., wzory
Twórcy
  • Cherkasy State Technological University, Instrumentation, Mechatronics and Computer Technologies Department, Blvd. Shevchenka, 460, 18006, Cherkasy, Ukraine
  • Cherkasy State Technological University, Instrumentation, Mechatronics and Computer Technologies Department, Blvd. Shevchenka, 460, 18006, Cherkasy, Ukraine
  • Cherkasy State Technological University, Instrumentation, Mechatronics and Computer Technologies Department, Blvd. Shevchenka, 460, 18006, Cherkasy, Ukraine
Bibliografia
  • [1] Rosado, L. S., Gonzalez, J. C., Santos, T. G., Ramos, P. M., & Pieda, M. (2013). Geometric optimization of a differential planar eddy currents probe for non-destructive testing. Sensors and Actuators A: Physical., 197, 96-105. https://doi.org/10.1016/j.sna.2013.04.010
  • [2] Su, Z., Efremov, A., Safdarnejad, M., Tamburrino, A., Udpa, L., & Udpa, S. (2015). Optimization of coil design for near uniform interrogating field generation. AIP Conference Proceedings, 1650, 405-413. https://doi.org/10.1063/1.4914636
  • [3] Su, Z., Ye, C., Tamburrino, A., Udpa, L., & Udpa, S. (2016). Optimization of coil design for eddy current testing of multi-layer structures. International Journal of Applied Electromagnetics and Mechanics, 52(1-2), 315-322. https://doi.org/10.3233/JAE-162030
  • [4] Liu, Z., Yao, J., He, C., Li, Z., Liu, X., & Wu, B. (2018). Development of a bidirectional-excitation eddy-current sensor with magnetic shielding: Detection of subsurface defects in stainless steel. IEEE Sensors J., 18(15), 6203-6216. https://doi.org/10.1109/JSEN.2018.2844957
  • [5] Ye, C., Udpa, L., & Udpa, S. (2016). Optimization and Validation of Rotating Current Excitation with GMR Array Sensors for Riveted Structures Inspection. Sensors, 16(9), 1512. https://doi.org/10.3390/s16091512
  • [6] Rekanos, I. T., Antonopoulos, C. S., & Tsiboukis, T. D. (1999). Shape design of cylindrical probe coils for the induction of specified eddy current distributions. IEEE Transactions Magnetics, 35(3), 1797-1800. https://doi.org/10.1109/20.767380
  • [7] Li, Y., Ren, S., Yan, B., Zainal Abidin, I. M., & Wang, Y. (2017). Imaging of subsurface corrosion using gradient-field pulsed eddy current probes with uniform field excitation. Sensors, 17, 1747. https://doi.org/10.3390/s17081747
  • [8] Hashimoto, M., Kosaka, D., Ooshima, K., & Nagata, Y. (2002). Numerical analysis of eddy current testing for tubes using uniform eddy current distribution. International Journal of Applied Electromagnetics and Mechanics, 15(1-4), 27-32. https://doi.org/10.3233/JAE-2002-511
  • [9] Repelianto, A. S., Kasai, N., Sekino, K., & Matsunaga, M. (2019). A Uniform Eddy Current Probe with a Double-Excitation Coil for Flaw Detection on Aluminium Plates. Metals, 9(10), 1116. https://doi.org/10.3390/met9101116
  • [10] Halchenko, V. Ya., Trembovetskaya, R. V., & Tychkov, V. V. (2020). Surface eddy current probes: excitation systems of the optimal electromagnetic field (review). Devices and Methods of Measurements, 11(2), 91-104. https://doi.org/10.21122/2220-9506-2020-11-2-91-104
  • [11] Trembovetska, R. V., Halchenko, V. Ya., Tychkov, V. V., & Storchak, A. V. (2020). Linear Synthesis of Uniform Anaxial Eddy Current Probes with a Volumetric Structure of the Excitation System. International Journal “NDT Days”, 3(4), 184-190. https://www.bg-s-ndt.org/journal/vol3/JNDTD-v3-n4-a01.pdf (in Russian)
  • [12] Halchenko, V. Ya., Yakimov, A. N., & Ostapuschenko, D. L. (2010). Global optimum search of functions with using of multiagent swarm optimization hybrid with evolutional composition formation of population. Information Technology, 10, 9-16. http://novtex.ru/IT/it2010/It1010.pdf (in Russian)
  • [13] Itaya, T., Ishida, K., Kubota, Y., Tanaka, A., & Takehira, N. (2016). Visualization of Eddy Current Distributions for Arbitrarily Shaped Coils Parallel to a Moving Conductor Slab. Progress In Electromagnetics Research M, 47, 1-12. https://doi.org/10.2528/PIERM16011204
  • [14] Itaya, T., Ishida, K., Tanaka, A., Takehira, N., & Miki, T. (2012). Eddy Current Distribution for a Rectangular Coil Arranged Parallel to a Moving Conductor Stab. IET Science, Measurement & Technology, 6(2), 43-51. https://doi.org/10.1049/iet-smt.2011.0015
  • [15] Kozieł, S., & Bekasiewicz, A. (2017). Multi-objective design of antennas using surrogate models, World Scientific Publishing Europe Ltd.
  • [16] Forrester, A. I. J., Sóbester, A., & Keane, A. J. (2008). Engineering design via surrogate modelling: a practical guide. Chichester: Wiley.
  • [17] Burnaev, E. V., Erofeev, P., Zaitsev, A., Kononenko, D., & Kapushev E. (2015). Surrogate modeling and optimization of the airplane wing profile based on Gaussian processes. http://itas2012.iitp.ru/pdf/1569602325.pdf (in Russian)
  • [18] Koziel, S., Echeverría Ciaurri, D., & Leifsson L. (2011). Surrogate-based methods. In Koziel S., Yang XS. (Eds.), Computational Optimization, Methods and Algorithms. Studies in Computational Intelligence, 356, Springer-Verlag. https://doi.org/10.1007/978-3-642-20859-1_3
  • [19] Halchenko, V. Ya., Trembovetska, R. V., Tychkov, V. V., & Storchak, A. V. (2019). Nonlinear surrogate synthesis of the surface circular eddy current probes. Przegląd Elektrotechniczny, 9, 76-82. https://doi.org/10.15199/48.2019.09.15
  • [20] Halchenko, V. Ya., Trembovetska, R. V., & Tychkov, V. V. (2019). Linear synthesis of non-axial Surface eddy current probes. International Journal “NDT Days”, 2(3), 259-268. https://www.ndt.net/article/NDTDays2019/papers/JNDTD-v2-n3-a03.pdf (in Russian)
  • [21] Trembovetska, R. V., Halchenko, V. Y., & Tychkov, V. V. (2019). Multiparameter hybrid neural network metamodel of eddy current probes with volumetric structure of excitation system. International Scientific Journal Mathematical Modeling, 4(3), 113-116. https://stumejournals.com/journals/mm/2019/4/113
  • [22] Koshevoy, N. D., Gordienko, V. A., & Sukhobrus, Ye. A. (2014). Optimization for the design matrix realization value with the aim to investigate technological processes. Telecommunications and radio engineering, 73(15), 1383-1386. https://doi.org/10.1615/TelecomRadEng.V73.i15.60 (in Russian)
  • [23] Halchenko, V. Ya., Trembovetska, R. V., Tychkov, V. V., & Storchak, A. V. (2020). The Construction of Effective Multidimensional Computer Designs of Experiments Based on a Quasi-random Additive Recursive Rd-sequence. Applied Computer Systems, 25(1), 70-76. https://doi.org/10.2478/acss-2020-0009
  • [24] Brink, H., Richards, J., & Fetherolf, M. (2017). Real-World Machine Learning. Manning Publications Co.
  • [25] Kuznetsov, B. I., Nikitina, T. B., & Bovdui, I. V. (2020). Active shielding of magnetic field of overhead power line with phase conductors of triangle arrangement. Tekhnichna elektrodynamika, 4, 25-28. https://doi.org/10.15407/techned2020.04.025
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8675c19d-9484-49bd-9df4-2543097dcf61
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.