Tytuł artykułu
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Alcoholism can be analyzed by Electroencephalogram (EEG) data. Finding an optimal subset of EEG channels for alcoholism detection is a challenging task. The paper reports a new methodology for the detection of optimal channels for alcoholism analysis using EEG data. The proposed technique employs the Empirical Mode Decomposition (EMD) technique to extract the amplitude and frequency modulated bandwidth features from the Intrinsic Mode Function (IMF) and ensemble subspace K-NN as a classifier to classify alcoholics and normal. The optimum channels are selected, using a harmony search algorithm. The fitness value of discrete binary harmony search (DBHS) optimization algorithms is calculated using accuracy and sensitivity achieved by the ensemble subspace K-Nearest Neighbor classifier. Experimental outcomes indicate that the optimal channel selected by the harmony search algorithm has biological inference related to the alcoholic subject. The proposed approach reports a classification accuracy of 93.87%, with only 12 detected EEG channels.
Wydawca
Czasopismo
Rocznik
Tom
Strony
83--96
Opis fizyczny
Bibliogr. 44 poz., rys., tab., wykr.
Twórcy
autor
- Department of Electronics & Telecommunication Engineering Dr.Babasaheb Ambedkar Technological University, Lonere 402103, India
autor
- Department of Electronics & Telecommunication Engineering Dr. Babasaheb Ambedkar Technological University, Lonere 402103, India
autor
- Department of Electronics & Telecommunication Engineering Dr.Babasaheb Ambedkar Technological University, Lonere 402103, India
Bibliografia
- [1] World Health Organization. ‘‘Alcohol’’ global status report on alcohol and health; 2018, Available from: https://apps.who.int/iris/rest/bitstreams/1151838/retrieve.
- [2] Bernice P, Begleiter H. Alcoholism and human electrophysiology. Alcohol Res Health 2003;27(2):153–60.
- [3] Mumtaz W, Vuong P, Malik A, Rashid R. A review on EEGbased methods for screening and diagnosing alcohol use disorder. Cogn Neurodyn 2018;12(April (2)):141–56.
- [4] ‘‘10/20 SYSTEM POSITIONING,’’ MANUAL. TRANS CRANIAL TECHNOLOGIES; 2012.
- [5] Guohun Z, Yan L, Peng W. Evaluating functional connectivity in alcoholics based on maximal weight matching. J Adv Comput Intell Intell Inform 2011;15(9):1221–7.
- [6] Acharya U, Sree S, Chattopadhyay S, Suri J. Automated diagnosis of control and alcoholic EEG signals. Int J Neural Syst 2012;22(3):1250011.
- [7] Padma T, Sriraam N. EEG based detection of alcoholics using spectral entropy with neural network classifiers. International Conference on Biomedical Engineering (ICoBE)); 2012. pp. 89–93.
- [8] Guohun Z, Yan L, Wen P, Wang S. Analysis of alcoholic EEG signals based on horizontal visibility graph entropy. Brain Inform 2014;1:19–25.
- [9] Padma T, Sriraam N. Pattern recognition of spectral entropy features for detection of alcoholic and control visual ERP's in multichannel EEGs. Brain Inform 2017;147–58.
- [10] Taran S, Bajaj V. Rhythm-based identification of alcohol EEG signals. IET Sci Meas Technol 2018;12(3):343–9.
- [11] Mumtaz W, Vuong P, Xia L, Malik A, Rashid R. An EEG-based machine learning method to screen alcohol use disorder. Cogn Neurodyn 2017;11(2):161–71.
- [12] Sharma M, Deb D, Acharya U. A novel three-band orthogonal wavelet filter bank method for an automated identification of alcoholic EEG signals. Appl Intell 2018;48:1368.
- [13] Muhammad S, Handayani T, Dini A. Classification of alcoholic EEG using wavelet packet decomposition, principal component analysis, and combination of Genetic Algorithm and Neural Network. International Conference on Information & Communication Technology and System (ICTS) 2017.
- [14] Jardel das C. Rodrigues, Pedro P. Rebouças Filho, Eugenio Peixoto, Arun Kumar N, Victor Hugo C. de Albuquerque. Classification of EEG signals to detect alcoholism using machine learning techniques. Pattern Recognition Letters, 2019;125,140-49.
- [15] Priya A, Yadav P, Jain S, Bajaj V. Efficient method for classification of alcoholic and normal EEG signals using EMD. J Eng 2018;2018(3):166–72.
- [16] Bavkar S, Iyer B, Deosarkar S. Detection of alcoholism: an EEG hybrid features and ensemble subspace K-NN based approach. In: Fahrnberger G, Gopinathan S, Parida L, editors. Distributed Computing and Internet Technology ICDCIT 2019 Lecture Notes in Computer Science, vol. 11319. 2018. p. 161–8.
- [17] Mumtaz W, Vuong P, Xia L, Malik A, Rashid R. Automatic diagnosis of alcohol use disorder using EEG features. Knowl-Based Syst 2016;105:48–59.
- [18] Mumtaz W, Saad MNBM, Kamel N, Ali SSA, Malik AS. An EEG-based functional connectivity measure for automatic detection of alcohol use disorder. Artif Intell Med 2018;84 (Jan):79–89.
- [19] Rieg T, Frick J, Hitzler M, Buettner R. High-performance detection of alcoholism by unfolding the amalgamated EEG spectra using the Random Forests method. HICSS-52 Proc 2019;3769–77.
- [20] Huang Y, Mohan A, De Ridder D, Sunaert S, Vanneste S. The neural correlates of the unified percept of alcohol-related craving: a fMRI and EEG study. Sci Rep 2018;8:923.
- [21] Bae Y, Yoo B, Lee J, Kim H. Automated network analysis to measure brain effective connectivity estimated from EEG data of patients with alcoholism. Physiol Meas 2017;38 (5):759–73.
- [22] Park S, Lee J, Kim Y, Lee J-Y, Jung H, Sohn B. Neural connectivity in internet gaming disorder and alcohol use disorder: a resting-state EEG coherence study. Sci Rep 2017;7(1):1333.
- [23] Andrew C, Fein G. Event-related oscillations versus eventrelated potentials in a P300 task as biomarkers for alcoholism. Alcohol Clin Exp Res 2010;34(4):669–80.
- [24] Sharma M, Sharma P, Pachori R, Acharya U. Dual-tree complex wavelet transform-based features for automated alcoholism identification. Int J Fuzzy Syst 2018;20(4):1297–308.
- [25] Zhang X, Begleiter H, Porjesz B, Litke A. Electrophysiological evidence of memory impairment in alcoholic patients. Biol Psychiatry 1997;42:1157–71.
- [26] Mukherjee S. Alcoholism and its effects on the central nervous system. Curr Neurovasc Res 2013;10:256–62.
- [27] Daskalakis Z, Christensen B, Fitzgerald P, Roshan L, Chen R. The mechanisms of interhemispheric inhibition in the human motor cortex. J Physiol 2002;543:317–26.
- [28] Ong K, Thung K, Chong W, Paramesran R. Selection of a subset of EEG channels using PCA to classify alcoholics and non-alcoholics. IEEE Engineering in Medicine and Biology 27th Annual Conference; 2005. pp. 4195–8.
- [29] Shooshtari M, Setarehdan S. Selection of optimal EEG channels for classification of signals correlated with alcohol abusers. Proceedings of the IEEE 10th International Conference on Signal Processing 2010;1–4.
- [30] Palaniappan R, Raveendran P, Omatu S. VEP optimal channel selection using a genetic algorithm for neural network classification of alcoholics. IEEE Trans Neural Netw 2002;13(2):486–91.
- [31] Jun-Yeup K, Seung-Min P, Kwang E, Kwee S. Optimal EEG channel selection for motor imagery BCI system using BPSO and GA. Robot Intell Technol Appl AISC 2012;208:231–9.
- [32] He L, Hu Y, Li Y, Li D. Channel selection by Rayleigh coefficient maximization based genetic algorithm for classifying single-trial motor imagery EEG. J Neurocomput 2013;121:423–33.
- [33] Henriksen J, Kjaer T, Madsen R, Remvig L, Thomsen C, Sorensen H. Channel selection for automatic seizure detection. Clin Neurophysiol 2012;123(1):84–92.
- [34] UCI KDD Database. Available from: https://archive.ics.uci.edu/ml/ machine-learning-databases/eeg-mld/.
- [35] Huang N, Shen Z, Long S, Wu M, Shih H, Zheng Q, et al. The empirical mode decomposition and the Hilbert spectrum for non-linear and non- stationary time series analysis. Proc R Soc Lond Ser A 1998;454(1971):903–95.
- [36] Cohen L, Lee C. Instantaneous bandwidth for signals and spectrogram. International Conference on Acoustics, Speech, and Signal Processing, 5; 1990. pp. 2451–4.
- [37] Geem ZW, Kim JH, Loganathan G. A new heuristic optimization algorithm: harmony search. Simulation 2001;76(2):60–8.
- [38] Geem Z. Harmony search in water pump switching problem. Advances in natural computation. Berlin Heidelberg: Springer; 2005. p. 751–60.
- [39] MATLAB and Statistics and Machine Learning Toolbox 2017a, the Mathworks, Inc., Natick, Massachusetts, United States.
- [40] Bavkar S, Iyer B, Deosarkar S. Rapid screening of alcoholism: an EEG based optimal channel selection approach. IEEE Access 2019;7:99670–82.
- [41] Malar E, Gauthaam M. Wavelet analysis of EEG for the identification of alcoholics using probabilistic classifiers and neural networks. Int J Intell Sustain Comput 2020;1(1).
- [42] Siuly S, Bajaj V, Sengur AK, Zang Y. An advanced analysis system for identifying alcoholic brain state through EEG signals. Int J Autom Comput 2019. http://dx.doi.org/10.1007/s11633-019-1178-7.
- [43] Harper J, Malone S, Iacono WG. Impact of alcohol use on EEG dynamics of response inhibition: a cotwin control analysis. Addict Biol 2018;23(1):256–67. http://dx.doi.org/10.1111/adb.12481.
- [44] Meyers JL, Zhang J, Chorlian DB, Pandey AK, Kamarajan C, Wang JC. A genome-wide association study of interhemispheric theta EEG coherence: implications for neural connectivity and alcohol use behavior. Mol Psychiatry 2020. http://dx.doi.org/10.1038/s41380-020-0777-6.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8672617c-d887-42bf-8742-f53e63203276