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Abstract. The article discusses the process of grind-

ing of the solid aggregates of the lacustrine sapropel 

based on the model of mechanics of deformed solid 

body. As the result of simulation the initially-final prob-

lem on theory of elasticity is solved by the method of 

integral transformations. The research presents a numer-

ical description of the tensed and deformed states of the 

solid aggregates of sapropel in dependence with the 

rates of loadings and geometric parameters. It discov-

ered space and time distribution of the main tangent 

stresses influencing sufficiently the process of destruc-

tion and degree of the given material grinding. 

Key words: theory of grinding, dynamic problem, 

shock load, integral transformations, main tangent 

stress. 

INTRODUCTION 

The fertility of soils is a crucial factor of a highly 

effective agricultural production under current condi-

tions. The main organic fertilizers provider until very 

recently was animal husbandry. However for the last 20 

years their volumes dropped considerably and this led to 

the 5 times decrease of the norms of organic fertilizers 

application in some regions [1]. The world technologies 

of crop growing are oriented only on the improvement 

of their industrially technological systems and their op-

timization to receive the highest outcomes [2, 3, 4], ne-

glecting ecological effects of economic management. 

On the other hand, the permanent increase of fuel costs 

may lead to the situation when the application of organ-

ic fertilizers of the animal origin would be ineffective. 

We currently get, therefore, an urgent need in seeking 

new types of organic fertilizers and new ways of their 

application. One of these may be the lacustrine sappro-

pel found in freshwater bodies. 

 

RECENT RESEARCH AND PUBLICATIONS 

ANALYSIS 

The major problem of the lacustrine sapropel utili-

zation in the natural state is its high (92 - 96%) humidi-

ty. For its further utilization as an organic fertilizer its 

humidity should not exceed 60 %. The sapropel humidi-

ty decrease, however, may result in the loss of nutrients 

[5, 6, 7]. When utilizing the lacustrine sapropel as an 

organic fertilizer by the surface method one should keep 

to the norms of 40/60 t/ha [7, 8, 9, 10]. The attemps of 

developing new fertilizers on the basis of sapropel faced 

the problems linked with the lack of industrial facilities 

of their manufacturing [14,15]. One of the ways of their 

utilization as a fertilizer, therefore, is the local applica-

tion of frozen sapropels. This allows to diminish several 

times the norm with the simultaneous saving of the nu-

trient complex for the plants. 

The received experimental results prove the fact 

that frozen lacustrine sapropels change their properties 

under the influence of environmental conditions. High 

humidity sapropels get  some solid inclusions and this 

phenomeon should be taken into consideration when 

choosing the way of sapropel application in the soils. In 

case of local application of frozen lacustrine sapropels 

without any processing these solid aggregates may neg-

atively affect the crops yielding capacity. Therefore, 

there appeared an urgent necessity of developing and 

putting into practice elementary but effective technolo-

gy of sapropel grinding during its application. 

Mathematical simulation of the technological pro-

cess of grinding is used in different branches. Grinding 

is supposed to be accompanied with the destruction of 

inter-molecular and inter-atom connections. Therefore, 

to make its quantities description one may use energetic 

approaches [13, 14]. In particular, in stimulation of the 

process of grinding, the work for destructing external 

forces is frequently associated with the area of the sur-
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faces formed in the result of destructing area and the 

volumes of the grinded materials.  

Unlike the solid bodies, soils and, in particular, sol-

id aggregates of sapropel are compound mixtures. Their 

destruction takes place, primarily, by the loss of adhe-

sion of some components and is mostly determined by 

these components’ composition, humidity, temperature, 

etc. In general, the mentioned above problems are re-

ferred to complex, geometrical and physical nonlinear 

models of mechanics of continuums. Nevertheless, quite 

a number of vital regularities and effects proceding the 

process of soil mixtures destruction and in many re-

spects facilitating them may be found and researched 

with application of a linear model of the theory of elas-

ticity [15]. The object of research is suggested to be a 

rectangular fragment of sapropel solid aggregate. Two 

opposite sides of this rectangle are high intensively 

loaded with an effect of self-balance. In addition, be-

cause of the effect of this material sticking to the de-

structive tool, its surface lacks tangent movements. Two 

other sides of the rectangle are considered free of load-

ing. 

SETTING OF THE PROBLEM 

Let us consider the 2 2h l  rectangle with 
1

x , and 

1
y  accordingly (Fig. 1). At the moment 0t   the rec-

tangle’s sides 
1

x l   are effected by normal forc-

es ( )p t . These sides are given the condition of the ab-

sence of tangential component of the vector of dis-

placement. Other surfaces y h   for all the period of 

deformation stay free of loading.  

 

y 1 
  

x 1 
  

0   

2l   

2h    p(t)     p(t)   

 
 

Fig. 1. Scheme of the objective 

 

For the convenience in describing mathematical 

phenomena and revealing the most characteristic pa-

rameters determining dynamic tensed and deformed 

state, we introduce into our analysis dimensionless vari-

ables and the values 
1

/x x l , 
1

/y y l , 

1
/c t l  , 

0
/x h l , 2

1 2/ ( 2 ) /c c      , 

where: 
1c , 

2c , – is the rate of spreading waves of com-

pression and shift in the material of sapropel,     – 

are elastic constants. 

In terms of these variables when 0t   and the ma-

terial is in the state of rest, the objective is formulated in 

the following way:  

- equation of the moment of elastic environment: 
2 2 2

2 2 2
x y

  



  
 

  
.                           (1) 

 

2 2 2

2 2

2 2 2
( 1)

y y y
u u u

yx y


 



   
   

  
.   (2) 

- initial conditions: 

0, 0, 0
y

y

u
u


 

 


    
 

.       (3) 

- conditions on the loaded surfaces: 

( 1, , ) ( ), ( 1, , ) 0
xx y

y p u y       .     (4) (4) 

- conditions on the free surfaces: 

0 0
( , , ) 0, ( , , ) 0

xx xy
x y x y       .     (5) 

where: ( , , )
yx

uu
x y

x y
 


 

 
 - is the volume 

expansion, ( , , )
x

u x y   ( , , )
y

u x y   - components of 

the vector of elastic displacement, 

2 ; 2 ;

2 ; ; ;

1
;

2

xx xx yy yy

yx

xy xy xx yy

yx

xy

uu

x y

uu

y x

     

   



   


  

 

 
  

  

 (6) 

- components of the tensor of stress and tensor of 

deformation. 

- Using the condition (4) and taking into considera-

tion:  

that  

11

( 1, , )
yx x

xx

uu u
y

x y x
 

  

  
    

   

, 

we receive: 
1 2

( 1, , ) ( 1, , )
xx

y y     


   . (7) 

CONSTRUCTION OF SOLVING THE 

PROBLEM 

Let us employ the Laplace integral transformation 

on the temporary variable and the Fourier cos final con-

struction on the variable x  [17], to the equation (1). 

Taking into consideration the problem’s symmetry, 

initial zero condition (3), the correlation (7) and the 

conditions (4), after all transformations instead of the 

equation (1), we shall receive: 
2

2 2 1

2

2
( ) ( 1) ( )

nn n

n n

d
s p s

dy

 
 




    ,    (8) 

where:  2 1 / 2
n

n   а ( , )
n

y s   

1

1 0

cos( ) ( , , ) exp( )
n

x x y s d dx    





    - is a rep-

resentation by Laplace and Fourier. 

Instead of the equation (2) we, accordingly, receive: 
2

2 2 2 2

2
( ) (1 )

n n

n n

d v d
s v

dydy


      ,   (9) 
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where: 
1

1 0

( , ) cos( ) ( , , ) exp( ) .
n n y

v y s x u x y s d dx   





  

Taking into consideration that ( , )
n

y s  is a binary cor-

relation function of a variable, the equation (7) is solved 

in the following way: 

1 2 2

1

( 1) 2 ( )
( ) cosh( )

n

n

n n

p s
A s y


 

 


  ,     (10) 

at 
2 2

1 n
s   . 

Taking into consideration (10), the equation (9) is 

solved in the following way: 

1

2 12
( ) sinh( ) ( ) sinh( )

n n n
v B s y A s y

s


   ,  (11) 

at 
2 2 2

2 n
s    . 

Another component of the vector of displacement 

can be found taking into consideration the correlation: 
1

1 0

( , ) sin( ) ( , , ) exp( )
n n x

u y s x u x y s d dx   





  

1 n

n n

n

dv
u

dy




 
  

 

 in the form: 

1

2 2

12 2 2

1

( , ) ( ) cosh( )

( 1) 2 ( )
( ) cosh( ) .

n n n

n

n

n

u y s B s y

p s
A s y

s

  




 


  




      (12) 

The values ( )
n

A s  and ( )
n

B s  can be determined 

under the limiting conditions (5), which in trans-

formants by Laplace and Fourier and in the terms of the 

found above expressions will have the following form: 

2

0

( 2) 2 0,

0, .

n

n

n

n n

du

dy

du
v y y

dy

 



  

    

               (13) 

Taking into consideration the expressions (10)-(12) 

from the conditions (13) we shall find the following: 
2 2 2

2 2 0

2

1

2

1 0

1

( ) sinh( ) ( )
( ) ;

( , )

2 sinh( ) ( )
( )

( , )

n n

n

n n

n

s y p s
A s

s

y p s
B s

s

  

 

 

 











    (14) (14) 

where:  
2

1 2 1 0 2 0

2 2 2

2 1 0 2 0

( , ) 4 sinh( ) cosh( )

( ) cosh( ) sinh( ),

n

n

s y y

y y

     

   

  

 

2

2

( 1) 2 ( 2) ( )
( )

n

n

n

p s
p s

 



 
 . 

Finally, by the known values ( )
n

A s  і ( )
n

B s  we 

shall receive: 

 





1 1 2 2

1 2 2 0 1

2

1 0 2

1 2 1 02

2 2

2 2 2 0 1 2

1

( , ) ( ) sinh( ) sinh( )

2 sinh( ) sinh( ) ;

1
( , ) 2 sinh( )

( 2)

cosh( ) ( ) sinh( ) cosh( ) .

n n

n n

n

n

n

n

n

v y s y y

y y p

u y s y

p
y y y

    

  


  

 

    


 
   






  



  


  (15) 

We shall carry out transformations by Laplace us-

ing the theorem of decomposition [17]. In this case we 

consider the first expression (15) and find singular 

points of the denominator. Apparently the roots of the 

expression 
1

0   are not the singular points of the 

dominator and, therefore, let us consider the equation: 
2

1 2 1 0 2 0

2 2 2

2 1 0 2 0

4 sinh( ) cosh( )

( ) cosh( ) sinh( ) 0.

n

n

y y

y y

    

   



  

    (16) 

The roots of the characteristic equation (16) are 

purely imaginary and comprehensively-connected. 

Therefore, it is reasonable to substitute s i  

and, correspondingly, to receive: 

 2 2

1 n
     2 2 2

2 n
     .  

The roots 
,n k

  apparently, depend on the discrete 

value 
n

 , and, therefore, there exist three cases of their 

arrangement : 

, , ,
0 ; ;

n n

n k n k n n k n

 
    

 
     .   (17) 

For the first interval the characteristic equation 

saves the form (16) and gets the final number of 

roads
, ,1n k

 . For the interval 
1

,n n k n
   


   the 

characteristic equation gets the form: 
2

1 2 1 0 2 0

2 2 2

2 1 0 2 0

4 sinh( ) cos( )

( ) cosh( ) sin( ) 0,

n

n

y y

y y

    

   



  
   (18) 

at 
2 2 2

2 n
     . It has the final number 

2
k  

of the roots 
, ,2n k

 . 

And, accordingly, for the interval 
,n k n

   the 

equation:  
2

1 2 1 0 2 0

2 2 2

2 1 0 2 0

4 sin( ) cos( )

( ) cos( ) sin( ) 0

n

n

y y

y y

    

   



  
     (19) 

at 
2 2

1 n
     has the infinite number of 

roots 
, ,3n k

 . 

For the use of the expression (15), with employ-

ment of the theorem of decomposition one must deter-

mine the value of the denominator [17]. Accordingly, 

we get the value of the derivative from the expressions 

for different intervals of arrangement of the characteris-

tic equation roots:



V. Didukh, M. Polishuuk, I. Turchyn  6 

 

, ,1

2

2 2 1

1 , ,1 1 0 2 0

1 2

2

1 0 2 0 0 2 1 0 2 0 0 1 1 0 2 0

2 2 2 2 2

2 1 0 2 0 2

0 , ( , ) 4 sinh( ) cosh( )

sinh( ) cosh( ) cosh( ) cosh( ) sinh( ) sinh( )

4 ( ) cosh( ) sinh( ) ( )

n k

n

n k ns

n n

n k i x x

x x x x x x x x

x x



   
    

  

        

      

 

 
         

 

   


   
2 0

1 0 2 0

1

2

2 2 2 0

2 1 0 2 0

2

sinh( ) sinh( )

( ) cosh( ) cosh( ) .
n

x
x x

x
x x

 



   






  



  (20) 

, , 2

2 2

2 , ,2 1 0 2 0

1

2

21

1 0 2 0 0 2 1 0 2 0 0 1 1 0 2 0

2

2 2 2 2

2 1 0 2 0

, ( , ) 4 sinh( ) cos( )

sinh( ) cos( ) cosh( ) cos( ) sinh( ) sin( )

4 ( ) cosh( ) sin( ) (

n k

n

n n k ns

n n

n k x x

x x x x x x x x

x x



 
     

 

 
        



     

 

 
       

 


   



   
2 2 0

2 1 0 2 0

1

2

2 2 2 0

2 1 0 2 0

2

) sinh( ) sin( )

( ) cosh( ) cos( ) .
n

x
x x

x
x x

  



   






  



     (21) 

, ,3

2 2

3 , ,3 1 0 2 0

1

2

21

1 0 2 0 0 2 1 0 2 0 0 1 1 0 2 0

2

2 2 2 2

2 1 0 2 0

, ( , ) 4 sin( ) cos( )

sin( ) cos( ) cos( ) cos( ) sin( ) sin( )

4 ( ) cos( ) sin( ) (

n k
n n k ns

n n

n k x x

x x x x x x x x

x x




     



 
        



     

 

 
      

 


   



   
2 2 0

2 1 0 2 0

1

2

2 2 2 0

2 1 0 2 0

2

) sin( ) sin( )

( ) cos( ) cos( ) .
n

x
x x

x
x x

  



   






  



          (22) 

Apart from the roots of the characteristic equitation 

(16) as singular points of at denominator, the second 

expression (15) has the roots of equation 
1

0  : 

s i  .  

Taking it into consideration, the final expression for 

the component vector of displacement will get the fol-

lowing form: 

 

 

1

2

2

0

2 2 2

1 2 1 0 2 , ,1 2 0 1

, ,12

1 1 1

2 2 2

1 2 1 0 2 , ,2 2 0 1

4 2
( , , ) 1 ( 1) sin( )

2 sinh( ) cosh( ) 2 sinh( ) cosh( )
( , )

( , )

2 sinh( ) cos( ) 2 sin( ) cosh( )

n

x n n

n

k
n n k

n k

k

n n k

u x y x

y y y y
f

n k

y y y y

  
 

        
 



        









 
     

 

  
 



 






 

2

, ,22

1 1 2

2 2 2

1 2 1 0 2 , ,3 2 0 1

, ,32

1 1 3

( , )
( , )

2 sin( ) cos( ) 2 sin( ) cos( )
( , )

( , )

k

n k

k

n n k

n k

k

f
n k

y y y y
f

n k

 

        
 












  
 

 





         (23) 
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 

 

1

2

0

2 2 2 2

, ,1 2 0 1 1 0 2

, ,1

1 1 1

2 2 2 2

, ,2 2 0 1 1 0 2

1 2

4 2
( , , ) 1 ( 1) cos( )

2 sinh( ) sinh( ) 2 sinh( ) sinh( )
( , )

( , )

2 sin( ) sinh( ) 2 sinh( ) sin( )

(

n

y n n

n

k
n n k n

n k

k

n n k n

u x y x

y y y y
f

n k

y y y y

  
 

       
 



       









 
     

 

  
 



 








 

2

, ,2

1

2 2 2 2

, ,3 2 0 1 1 0 2

, ,3

1 1 3

( , )
, )

2 sin( ) sin( ) 2 sin( ) sin( )
( , ) ,

( , )

k

n k

k

n n k n

n k

k

f
n k

y y y y
f

n k

 

       
 











  
 

 





          (24) 

 

where: 

0

( , ) ( ) sin( )f p t t dt



     .          (25) 

The component of the tensor of deformation and 

the tensor of stress are calculated by the formula (6) at 

the known components of the vector of displacement 

(23). One may also show that all the series of the solu-

tion (23) uniformly converge and, therefore, differenti-

ating operations at determining component-tensor of de-

formations and tensor of stresses can be carried out un-

der the sign of a sum.  

Under conditions simulating the sapropel grinding 

the dynamic loadings is determined and depends upon 

the velocity of rotor blades rotation. It increases mono-

toneously from the zero to its maximum values. When 

carrying out the numerical calculations we employed 

the following dependence 
2

( ) * (1 exp( ))p t p at    which for the unlimited 

time   will have the form: 
2

0
( ) (1 exp( ))p p  


   ,                   (26) 

at:  0 1
/l a c   . 

Such dependence allows to coordinate the initial 

and final conditions and, in many a case, to approach ra-

ther accurately the real dependence of dynamic loading 

on the time (Fig. 2). 
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Fig. 2. Dependence of loading upon the time 

 

The integral calculation (25) for the dependence of 

loading (26) allows to determine the function ( , )f   : 
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 (26) 

For such type of loading we calculated the tensed 

state of the sapropel solid aggregates of a rectangular 

form for different values 
0

  at different correlations of 

the width and length of a rectangle. Fig. 3-5 illustrate 

the results of calculating the tensed state of the sapropel 

solid aggregate of the quadratic form ( l h ) at differ-

ent values of the rates of loading. Fig. 3-5 illustrate the 

results of calculating the stained state of the sapropel 

solid aggregate of the quadratic form ( l h ) at differ-

ent values of the rates of loading. 
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Fig. 3. Prolonged stress in sapropel depending on 

the rate of loading  
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Fig.4. Transversal stress in sapropel depending on 

the rate of loading 
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Fig.5. Tangent stress in sapropel depending on the 

rate of loading 

 

Fig. 3-5 allow to make a conclusion that at the ade-

quate rate of loading ( 5
o

  ) the prolonged dynamic 

stress is two times higher than the corresponding static 

value by an amplitude. 

At some moments the transversal stresses are about 

80% of the static ones. As to the tangent stresses, they 

are only about 8% of them. The similar results are re-

ceived in calculating the stressed states at other points 

and other correlations of the heights and width of the 

sapropel solid aggregate. Moreover, any variations in 

the correlation between the height and width of the solid 

aggregate lead to dropping of the tangent stresse levels. 

This fact allows to state that in such a way of for-

mulating the objective the axes of the chosen systems of 

coordinates may be considered the principal axes of the 

tensor of stress at any points of the right-angled area. In 

its turn, this sufficiently simplifies the calculation of the 

main tangent stress in the material of sapropel. 

In such case the maximum tangent stresses by 

module are known to act on the sites inclined to the axes 

of coordinates under the angle of 45o[3] and form: 

m ax
2

xx yy
 

  .                       (27) 

 
Fig. 6. Distribution of the main tangent stress in 

sapropel at 0.5h l  

 

The Fig. 6 presents the results of calculating spatial 

and time distribution of refered to p


 of the main 

tangent stresses in the element of the element of 

sapropel which has the rectangular form with 

correlation of the hight and width 2 : 1, at 
0

5   for 

different values of infinite time. 
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CONCLUSIONS 

Our research resulted in the following qualitative 

positions. At first moments after the load application, 

zones of maximum tangent forces are concentrated in 

the local areas. Their disposal allows to forecast the pat-

tern’s breaking down into 6-8 segments under condition 

of the tangent forces getting their maximum values. At 

these momentit it is correlated with the value of external 

loading. If these forces are not sufficient enough for de-

struction, they have the chance to increase twice at 0=1. 

(t = 0.2mc) because of the climbed waves covering. In 

case of the reflected waves arrival these forces increase 

three times comparing with the value of applicated load-

ing. Nevertheless, zone of these forces action is concen-

trated closer to the pattern’s centre which gives the op-

portunity to forecast the pattern’s breaking down into 2-

4 segments. The analogous results are also received for 

other geometric correlations between the pattern’s 

height and width. Thus, taking into consideration simu-

lation constructions and numerical calculations one may 

state that the maximum value of the main tangent stress 

is reached in the areas situated closer to the patterns 

centre and make up about 300% of the external loading 

level. But for the more accurate grinding one must lead 

external loading to the level of maximum static value of 

the net destruction which can be determined experimen-

tally.  
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