PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development and Characterization of Polyvinyl Alcohol/Bacterial Cellulose Composite for Environmentally Friendly Film

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This research aimed to develop and characterize polyvinyl alcohol (PVA)/bacterial cellulose (BC) composite for environmentally friendly films. BC was produced from a high-performance strain of Komagataeibacter intermedius BE073 isolated from a bio-extract sample. The film was prepared by varying the ratio between PVA and BC content, and treatments consisted of 100:0, 90:10, 80:20, 70:30, and 60:40. The characterization of PVA/BC film in terms of mechanical properties, film structure, water and oxygen resistances, thermal stability, and biodegradation were investigated. Results revealed that PVA/BC film had properties superior to that of pure PVA film, and it has a high biodegradation rate. The mechanical properties changed little with the addition of BC, but the tensile strength and Young’s modulus increased with the addition of BC. Water absorption and moisture content were also reduced. However, adding BC improved oxygen transmission rates and thermal stability properties. Most importantly, the addition of BC helped the film to degrade. The higher the amount added, the higher the natural decomposition rate.
Rocznik
Strony
226--238
Opis fizyczny
Bibliogr. 50 poz., rys., tab.
Twórcy
  • Faculty of Agricultural Product Innovation and Technology, Srinakharinwirot University, Nakon Nayok, 26120, Thailand
  • Faculty of Agricultural Product Innovation and Technology, Srinakharinwirot University, Nakon Nayok, 26120, Thailand
  • Faculty of Agricultural Product Innovation and Technology, Srinakharinwirot University, Nakon Nayok, 26120, Thailand
  • Faculty of Environmental Culture and Ecotourism, Srinakharinwirot University, Bangkok, 10110, Thailand
  • Faculty of Engineering, Rajamangala University of Technology Thanyaburi, Pathum Thani, 12110, Thailand
Bibliografia
  • 1. Abdel Bary, E.M., Fekri, A., Soliman, Y.A., Harma, A.N. 2018. Aging of membranes prepared from PVA and cellulose nanocrystals by use of thermal compression. International Journal of Environmental Studies, 75(6), 950–964.
  • 2. Abdulkhani, A., Marvast, E.H., Ashori, A., Hamzeh, Y., Karimi, A.N. 2013. Preparation of cellulose/ polyvinyl alcohol biocomposite films using 1-nbutyl-3-methylimidazolium chloride. International Journal of Biological Macromolecules, 62, 379–386.
  • 3. Adoor, S.G., Prathab, B., Manjeshwar, L.S., Aminabhavi, T.M. 2007. Mixed matrix membranes of sodium alginate and poly(vinyl alcohol) for pervaporation dehydration of isopropanol at different temperatures. Polymer, 48(18), 5417–5430.
  • 4. Agustin, M.B., Ahmmad, B., De Leon, E.R.P., Buenaobra, J.L., Salazar, J.R., Hirose, F. 2013. Starch-based biocomposite films reinforced with cellulose nanocrystals from garlic stalks. Polymer composite, 34(8), 1325–1332.
  • 5. Alvarez, O.M., Patel, M., Booker, J., Markowitz, L. 2004. Effectiveness of a biocellulose wound dressing for the treatment of chronic venous leg ulcers: Results of a single center randomized study involving 24 patients. Wounds, 16(7), 224–233.
  • 6. American Society for Testing and Materials – ASTM. 2002. ASTM D882-02: standard test methods for tensile properties of thin plastic sheeting. West Conshohocken: ASTM.
  • 7. American Society for Testing and Materials – ASTM. 2002. ASTM D3985: standard test methods for tensile properties of thin plastic sheeting. West Conshohocken: ASTM.
  • 8. American Society for Testing and Materials – ASTM. 2013. ASTM F1249-13; Standard Test Method for Water Vapor Transmission Rate Through Plastic Film and Sheeting Using a Modulated Infrared Sensor. ASTM International: West Conshohocken, PA, USA, 2013.
  • 9. Backdahl, H., Helenius, G., Bodin, A., Nannmark, U., Johansson, B.R., Risbergb, B., Gatenholm, P. 2006. Mechanical properties of bacterial cellulose and interactions with smooth muscle cells. Biomaterials, 27(9), 2141–2149.
  • 10. Chakraborty, A., Sain, M., Kortschot, M. 2006. Reinforcing potential of wood pulp-derived microfibres in a PVA matrix. Holzforschung, 60(1), 53–58.
  • 11. Chen, N., Li, L., Wang, Q. 2007. New technology for thermal processing of poly(vinyl alcohol). Plastics, Rubber and Composites. Macromolecular Engineering, 36, 283–290.
  • 12. Choo, K., Ching, Y.C., Chuah, C.H., Julai, S., Liou, N.S. 2016. Preparation and characterization of polyvinyl alcohol-chitosan composite films reinforced with cellulose nanofiber. Materials, 9(8), 644.
  • 13. Czaja, W., Krystynowicz, A., Bielecki, S., Brown Jr., R.M. 2006. Microbial cellulose the natural power to heal wounds. Biomaterials, 27(2),145–151.
  • 14. Dahman, Y. 2009. Nanostructured biomaterials and biocomposites from bacterial cellulose nanofibers. Journal of Nanoscience and Nanotechnology, 9, 5105–5122.
  • 15. Demchenko, O., Zheltonozhskaya, T., Turov, A., Tsapko, M., Syromyatnikov, V. 2005. Poly(vinyl alcohol)-graft-polyacrylamide with different grafts number and length as studied by 1H NMR spectroscopy. Molecular Crystals and Liquid Crystals, 427, 225–233.
  • 16. Graupner, N., Herrmann, A.S., Müssig, J. 2009. Natural and manmade cellulose fibre-reinforced poly(lactic acid) (PLA) composites: an overview about mechanical characteristics and application areas. Composites Part A, 40(6-7), 810–821.
  • 17. Grunlan, J.C., Grigorian, A., Hamilton, C.B., Mehrabi, A.R. 2004. Effect of clay concentration on the oxygen permeability and optical properties of a modified poly (vinyl alcohol). Journal of Applied Polymer Science, 93, 1102–1109.
  • 18. Haghighi, H., Gullo, M., China, S.L., Pfeifer, F., Siesler, H.W., Licciardello, F., Pulvirenti, A. 2021. Characterization of bio-nanocomposite films based on gelatin/polyvinyl alcohol blend reinforced with bacterial cellulose nanowhiskers for food packaging applications. Food Hydrocolloids, 113, 106454.
  • 19. Hestrin, S., Schramm, M. 1954. Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochemical Journal, 58(2), 345–352.
  • 20. Hong, F., Qiu, K. 2008. An alternative carbon source from konjac powder for enhancing production of bacterial cellulose in static cultures by a model strain Acetobacter aceti subsp. xylinus ATCC 23770. Carbohydrate Polymers, 72(3), 545–549.
  • 21. Iguchi, M., Yamanaka, S., Budhiono, B. 2000. Bacterial Cellulose: A Masterpiece of Nature’s Arts. Journal of Materials Science, 35, 261–270.
  • 22. Jayasekara, R., Harding, I., Bowater, I., Christie, G. B.Y., Lonergan, G.T. 2004. Preparation, surface modification and characterisation of solution cast starch PVA blended films. Polymer Testing, 23(1), 17–27.
  • 23. Jiang, Y., Hou, Y., Fang, J., Liu, W., Zhou, Z. 2019. Preparation and characterization of PVA/SA/HA composite hydrogels for wound dressing. International Journal of Polymer Analysis and Characterization, 24, 132–141.
  • 24. Laxmeshwar, S.S., Madhu Kumar, D.J., Viveka, S., Nagaraja, G.K. 2012. Preparation and properties of biodegradable film composites using modified cellulose fibre-reinforced with PVA. ISRN Polymer Science, 12, 1–8.
  • 25. Lu, L., Sun, H., Peng, F., Jiang, Z. 2006. Novel graphite-filled PVA/CS hybrid membrane for pervaporation of benzene/cyclohexane mixtures. Journal of Membrane Science, 281(1–2), 245–252.
  • 26. Ma, Z., Ma, Y., Qin, L., Liu, J., Su, H. 2016. Preparation and characteristics of biodegradable mulching films based on fermentation industry wastes. International Biodeterioration & Biodegradation, 111, 54–61.
  • 27. Mansur, H.S., Oréfice, R.L., Mansur, A.A.P. 2004. Characterization of poly (vinyl alcohol)/poly (ethylene glycol) hydrogels and PVA-derived hybrids by small-angle X-ray scattering and FTIR spectroscopy. Polymer, 45(21), 7193–7202.
  • 28. Mathew, A.P., Oksman, K., Sain M. 2005. Mechanical properties of biodegradable composites from poly lactic acid (PLA) and microcrystalline cellulose (MCC). Journal of Applied Polymer Science, 97, 2014–2025.
  • 29. Mehrali, M., Shirazi, F.S., Mehrali, M., Metselaar, H.S.C., Kadri, N.A.B., Osman, N.A.A. 2013. Dental implants from functionally graded materials. Journal of Biomedical Materials Research Part A., 101, 3046–3057.
  • 30. Meit´, N., Konan, L.K., Tognonvi, M.T., Doubi, B.I.H.G., Gomina, M., Oyetola, S. 2020. Properties of Hydric and biodegradability of cassava starchbased bioplastics reinforced with thermally modified kaolin. Carbohydrate Polymer, 254, 117322.
  • 31. Mousa, M.H., Dong, Y., Davies, I.J. 2016. Recent advances in bionanocomposites: preparation, properties, and applications. International Journal of Polymeric Materials and Polymeric Biomaterials, 65(5), 225–254.
  • 32. Nigam, S., Das, A.K., Patidar, M.K. 2021. Valorization of Parthenium hysterophoru sweed for cellulose extraction and its application for bioplastic preparation. Journal of Environmental Chemical Engineering, 9, 105424.
  • 33. Niu, Y., Zhang, X., He, X., Zhao, J., Zhang, W., Lu, C. 2015. Effective dispersion and crosslinking in PVA/cellulose fiber biocomposites via solid-state mechanochemistry. International Journal of Biological Macromolecules, 72, 855–861.
  • 34. Pereda, M., Dufresne, A., Aranguren, M.I., Marcovich, N.E. 2014. Polyelectrolyte films based on chitosan/olive oil and reinforced with cellulose nanocrystals. Carbohydrate Polymers, 101, 1018–1026.
  • 35. Reddy, J.R., Rhim, J. W. 2014. Characterization of bionanocomposite films prepared with agar and paper-mulberry pulp nanocellulose. Carbohydrate Polymers, 110, 480–488.
  • 36. Santi, R., Cigada, A., Curto, B.D., Farè, S. 2019. Modulable properties of PVA/cellulose fiber composites. Journal of Applied Biomaterials and Functional Materials,1–7.
  • 37. Senna, M., Al-Shamrani, K., Al-Arifi, A. 2014 Edible coating for shelf-life extension of fresh banana fruit based on gamma irradiated plasticized poly(vinyl alcohol)/carboxymethyl cellulose/tannin composites. Materials Sciences and Applications, 5, 395–415.
  • 38. Shao, L.S., Li, J.J., Guang, Y., Zhang, Y.L., Zhang, H., Che, X.Y., Wang, Y.H. 2016. PVA/polyethyleneimine-functionalized graphene composites with optimized properties. Materials & Design, 99, 235–242.
  • 39. Singhaboot, P., Kroeksakul, P. 2022. High performance of bacterial strain isolated from bio-extract for cellulose production. Pertanika Journal Tropical Agricultural Science, 45(4), 1161–1175.
  • 40. Siqueira, G., Bras, J., Dufresne, A. 2009. Cellulose whiskers versus microfibrils: Influence of the nature of the nanoparticle and its surface functionalization on the thermal and mechanical properties of nanocomposites. Biomacromolecules, 10, 425–432.
  • 41. Sonker, A., Rathore, K., Teotia, A., Kumar, A., Verma, V. 2018. Rapid synthesis of high strength cellulose–poly(vinyl alcohol) (PVA) biocompatible composite films via microwave crosslinking. Journal of Applied Polymer Science, 136.
  • 42. Thakore, I.M., Desai, S., Sarawade, B.D., Devi, S. 2001. Studies on biodegradability, morphology and thermomechanical properties of LDPE/modifed starch blends. European Polymer Journal, 37, 151–160.
  • 43. Wang, S., Ren, J., Li, W., Sun, R., Liu, S. 2014. Properties of polyvinyl alcohol/xylan composite films with citric acid. Carbohydrate Polymers, 103, 94–99.
  • 44. Wang, Z., Ding, Y., Wang, J. 2019. novel polyvinyl alcohol (pva)/cellulose nanocrystal (cnc) supramolecular composite hydrogels: preparation and application as soil conditioners. Nanomaterials, 9(10), 1397.
  • 45. Xu, S., Jiang, M., Lu, Q., Gao, S., Feng, J., Wang, X., He, X., Chen, K., Li, Y., Ouyang, P. 2020. Properties of polyvinyl alcohol films composited with hemicellulose and nanocellulose extracted from artemisia selengensis straw. Frontiers Bioengineering and Biotechnology, 8.
  • 46. Yang, X., Li, L., Shang, S., Tao, X.M. 2010. Synthesis and characterization of layer-aligned poly (vinyl alcohol)/graphene nanocomposites. Polymer, 51(15), 3431–3435.
  • 47. Yeom, C.K., Lee., K.H. 1998. Characterization of sodium alginate and poly(vinyl alcohol) blend membranes in pervaporation separation. Journal of Applied Polymer Science, 67, 949–959.
  • 48. Zhai, M., Yoshii, F., Kume, T., Hashim, K. 2002. Syntheses of PVA/starch grafted hydrogels by irradiation. Carbohydrate Polymers, 50, 295–303.
  • 49. Zhang, W., Yang, X., Li, C., Liang, M., Lu, C., Deng, Y. 2011. Mechanochemical activation of cellulose and its thermoplastic polyvinyl alcohol ecocomposites with enhanced physicochemical properties. Carbohydrate Polymers, 83(1), 257–263.
  • 50. Zhao, Q., Wang, S., Cheng, X., Yam, R.C., Kong, D., Li, R.K. 2010. Surface modification of cellulose fiber via supramolecular assembly of biodegradable polyesters by the aid of host-guest inclusion complexation. Biomacromolecules, 11(5), 1364–1369.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-866ac31d-f618-404b-9d75-fee2d159d11c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.