
M. BAZAN, T. JANICZEK, K. HALAWA, R. DUDEK, Ł. RUDAWSKI

3Volume 10 • Issue 1 • February 2017

TelematicsTelematics
Transport SystemTransport System

Archives of Volume 10

Issue 1

February 2017

Design and development of a road
traffic redirection system

M. BAZAN, T. JANICZEK, K. HALAWA, R. DUDEK, Ł. RUDAWSKI
WROCŁAW UNIVERSITY OF SCIENCE AND TECHNOLOGY, Faculty of Electronics, ul. Janiszewskiego 11/17,
50-372 Wrocław, Poland
EMAIL: marek.bazan@pwr.edu.pl

ABSTRACT
Nowadays, the crucial issue of guidance systems based on a GPS signal is that they are not able to redirect road users,
taking into account the current state of traffic (and the predicted state within the time of the travel) in the city. In
this paper we present a three layer architecture of a computer system capable of redirecting users of an urban road
system via routes with a lighter traffic load in order to reach their declared destination in the city. A basic layer is a
multiprocessor calculation server running Dijkstra path search tasks, the middle layer - the one which is visible to
the road user - is a replicable proxy server that collects route requests from road users. The third layer is a mobile
application. The prototype of such a system was developed by the ArsNumerica Group. The crucial feature of the
system is feedback from road users that allows us to adjust the whole Intelligent Transportation System in the city
to changes in traffic flow at various road links introduced by the redirection process applied to many users. The
performance test strategy to prove the efficiency of the architecture was carried out for the city of Wrocław.

KEYWORDS: traffic redirection, Dijkstra algorithm, fastest path finding algorithms, dynamic rerouting, 	
	 guidance systems

1. Introduction
In recent years the ArsNumerica Group has implemented and

tested three designs of a redirection system that would serve a road
user as a guidance system that enables to drive from one point in
the city to another via the fastest route (in the shortest time). The
fastest of course does not mean the shortest one – it means the route
calculated taking into account traffic load in particular places of
the city – places that are controlled by an Intelligent Transportation
System. The implementation of the prototype of the system that
is presented in this paper enabled the establishment of scalability
parameters so that the system extended with many calculation
nodes becomes a high availability, high responsiveness system.

Figure 1 shows a sketch of the design of the system. It consists
of three layers. The one visible to road users is a mobile phone
application that enables logging on to the system and to enter a
destination point. Afterwards the origin and the destination is
sent to the server proxy that checks whether such a query has
not been requested by another user recently. The check is done

within the local cache. If the same origination - destination has
been within the prescribed time it is accessible for users from
the cache on the proxy server and no communication with the
calculation server – the deepest layer of the system - is necessary.
The calculation server obtains a task to process from the proxy
server – i.e., to calculate the fastest route between the origin and
the destination only if a task is not in a local cache of the proxy
server. The calculation server is also responsible for downloading
a description of the current traffic situation from an Intelligent
Transportation System of the city.

In Poland, systems of a similar functionality are already available. To
our knowledge however, all systems available are based on GPS speed
estimation [8, 9]. Moreover such centralized systems as [10] are based
on GPS data collection from users who possess an Android phone.

The prototype of one calculation node system presented in this
paper enables us to establish conditions for a multiple calculation node
system (currently being developed by the ArsNumerica Group) to
possess a property of high scalability using low cost machines (11]).

DESIGN AND DEVELOPMENT OF A ROAD TRAFFIC REDIRECTION SYSTEM

© Copyright by PSTT , All rights reserved. 20174

Fig. 1. A 3-layer architecture of the traffi c redirection system.
For the end user only a mobile application is visible. It
communicates with a proxy server using UDP. The proxy
server buff ers a request from users unless it has not been
calculated recently. The proxy server sends uncalculated
requests to the calculation server, which performs a bi-
directional two threaded Dijkstra algorithm or A* with a
prediction of the traffi c on the move in successive instances
of time by methods described in [21] and [22] on the city
map and sends back the results to the proxy server which
in turn dispatches the response to an appropriate mobile
application user [own study].

Th e remainder of the paper is organized as follows. In section
2 we describe the architecture of the system more deeply, together
with message formats between its parts and the database schema
used in the system. In section 3 we present the manner in which
we tested the solution with the JMeter tool. Also in this section
tests results are shown. Finally in section 4 we draw conclusions
showing the scalability range of a multimode system.

2. The architecture of the system
Th e architecture of the system consists of three layers: a

calculation server, a proxy server and multiple client applications.

2.1. The calculation server

Th e main aim of the calculation server that is the foundation
of the whole system is twofold. First of all it provides the quickest
route solutions for a given pair of nodes in the graph that represent
a map of the urban area. Secondly, it maintains the current
state of the weights of the graph based on connection with the
intelligent transportation systems. Every 5 minutes it downloads
a package with the current state from the city ITS and updates a
graph by a procedure of swapping. Here the problem arises with
a substantially changed situation on the road. How is the system
supposed to react? Aft er downloading the package containing
new weights corresponding to the traffi c load in the network from
the ITS, all the tasks that are currently processed are canceled. Th e

information on cancelation is also sent to the proxy server since
some of the queries from the client are not sent from the proxy
server to the calculation server but the response is retrieved from
the local cache of the proxy server. Th is operation is performed by
the thread that downloads ITS data and is done every 5 minutes.

In case of the ITS state update the cache of the proxy server is
cleared. Aft er updating the map graph by a thread on the server
the tasks are recalculated. One may think of the UDP message
broadcast to all waiting clients that recalculation due to traffi c
changes is taking place. Th e protocols used to connect to the ITS
can be TCP. Th e protocol that is used to connect to the proxy
server is also TCP. Th e format of the message that comes from
the proxy server is shown in Figure 2, whereas the format of the
response is shown in Figure 3. Each request in the calculation
server is served in a separate service thread. Th e aim of a service
thread of the calculation server is to eff ectively calculate the
shortest path between start and end nodes in an urban area. Th e
weights on the edges are inversely proportional to the travel speed
or the congestion on the corresponding road section. Th e classical
method to calculate the shortest path between nodes in a graph are
Dijkstra and A* algorithms [2]. Th ese algorithms do not require
any time consuming preprocessing of a graph and thus fi t to the
architecture of the tested system. In [1] we tested various versions
of multithreaded Dijkstra algorithms to fi nd out that the most
eff ective shortest path algorithm from the Dijkstra family is the
two thread bi-directional Dijkstra algorithm with Fibbonacci heap
used to calculate the closest node to the currently processed one.
Each thread starts to search from the start and the end node until
the balls around the start and the end node meet and to search
for the closest node at each step two instances of a Fibbonacci
heap are employed – one per thread. Similar evaluations of road
networks can be found e.g., in [5].

Such a version of the Dijkstra algorithm was implemented in our
calculation server. Th e results of our tests are in accordance with the
ordering of the algorithms for fi nding the shortest path with respect
to their computational complexity [3]. Th e bi-directional Dijkstra
algorithm is asymptotically the fastest amongst algorithms without
any preprocessing.

Algorithms with preprocessing, such as arc fl ags family
algorithms [4] turn out to be problematic since the calculation of
arc-fl ags may last longer than the time between the current road
traffi c state downloads, therefore their usage in real time may be
limited. On the other hand, if we used such an algorithm as the
arc-fl ags algorithm, the separation of a calculation server from a
proxy server would be questionable since the calculation server
would do only preprocessing common for all client applications.
Th e bi-directional Dijkstra algorithm is used commercially in
such soft ware as MapQuest, Yahoo! Maps or Microsoft MapPoint
(c.f. [6]).

2.2. The proxy server

Th e proxy server is a pass through server that collects two
types of messages from mobile devices connecting from the city.
Th e fi rst type is a logon message in which the origination and
destination nodes are contained. Th e requests originate from the
devices via UDP protocol in the format presented in Fig. 2.

M. BAZAN, T. JANICZEK, K. HALAWA, R. DUDEK, Ł. RUDAWSKI

5Volume 10 • Issue 1 • February 2017

Fig. 2. A format of a message that is received by the calculation
server from the proxy server. The fi rst number is a unique
identifi er of the mobile device that the request has come
from – perhaps e.g., the MAC number of the network card.
The starting node number is an ID of the node in the map. A
database of the GIS locations of nodes should reside on the
calculation server and on mobile devices [own study].

Th e second type of message is a message containing a piece of
information on the travel time between the two subsequent nodes
that the vehicle containing the mobile device has just achieved.
Th e format of this type of message is shown in Figure 3.

Fig. 3. A format of a message that encodes a response of the
calculation server and is sent to the proxy server. The fi rst
number is a unique identifi er of the mobile device that the
request is going to return to. The second is the number
of nodes that the optimal route consists of. N_k is an ID
number of the k-th node (the vertex in the graph) in the
optimal route. Hence, t_k is the travel time required to
pass the connection between nodes with IDs Nk-1 and Nk. It
is important that in the graph there is a direct connection
between Nk-1 and Nk for k=2,…,N [own study].

Aft er receiving a request from a road user’s mobile device, the
fi rst thing the proxy server does is check whether the calculation for
the same request has already been done by the calculation server
since the last update of the traffi c state from ITS or from the proxy
server itself – that collects travel times from vehicles already driving
via routes sent them from the system. If such a calculation has been
performed already it is in the local cache of the proxy server.

Th e local cache is implemented on the SQL database. Th e
database schema that implements a local cache required to maintain
data in order to prevent a considerable number of requests to the
calculation server is shown in Figure 5.

Th e local cache of the proxy server is also used to collect
information from mobile devices on the travel time that the vehicle
with it needed to pass between two successive nodes. Every prescribed
number of passed nodes the mobile device sends a message to the
proxy server with its registered travel time (see Fig. 4).

Fig. 4. A format of the message sent from a mobile device to the
proxy server to update a current travel time on the link
starting from Ns and ending at Ne that the vehicle with the
device has just driven [own study].

Fig. 5. The database schema of the proxy server. It is composed
of four tables. Tables CLIENT_REQUEST, ROUTES,
NODES_COORDINATES, SERVER_LOGS are used to handle
responses from the calculation server whereas the table
CURRENT_TIMES is used to store current travel times
received from clients that follow the recommendation of the
system. Currently our cache is implemented using MySQL
database (see [17]). To speed it up still one can use one of
the in-memory databases (e.g. SQLite – see e.g. [18], [19]),
which would run for an adequate workload with no need
to perform unnecessary I/O disk operations to update or
retrieve data [own study].

In such a situation the table CURRENT_TIMES table is updated.
Please note that there is no problem with concurrency since only
the recent travel times record received is stored for a particular pair
of nodes.

Th e content of the cache is sent to the calculation server every
prescribed period of time. It is clear that the travel times contained
within the cache are very reliable and thus they can overwrite times
from the ITS, those which are not measured using license plate
recognition but estimated from the fundamental diagram using
only vehicle counts on the intersections (see [12] for a method).

2.3. The road user application

Th e task of the client application is twofold. First of all it is for
sending a request to the proxy server in a format shown in Fig.
2. Th e N_s is a current spatial position of the device. Th e request
is sent to the proxy server asynchronously with UDP. Once a
response is received from the proxy server – which in turn got
the response from its local cache or got it from the calculation
server – the route is visualized. To do this the application has to
have a city map installed. Th e city map has to be stored in a form of
the database table – similar to the table NODES_COORDINATES
at the proxy server. It is necessary for the client application to be
able to fi nd the closest node from which the route can be tracked
with a traffi c load. It of course cannot calculate naively the closest

DESIGN AND DEVELOPMENT OF A ROAD TRAFFIC REDIRECTION SYSTEM

© Copyright by PSTT , All rights reserved. 20176

node to the current start position, since the closest node may not
give the possibility of reaching a destination point. So the client
application has to have the ability of performing the Dijkstra
shortest path calculation – of course the weights of the graph
would be the length of the edges. As a simple database manager
one can use one of the in-memory solutions for mobile systems
(e.g., [19]).

The second role of the client application is to provide the
calculation server – via proxy server - with the update of the current
travel time on the edge the vehicle with the device has just passed,
while traveling on the route received from the proxy server. Th is
information is sent to the proxy server also via UDP in a format
presented in Figure 5 every time a map node is passed while driving.

To provide the multi-platform application the Xamarin package
can be used (c.f. [13]). Th e Xamarin development environment
enables us to write a code in c# and to build the executable and deploy
it not only on the Windows Phone platform but also on Android and
iOS platform.

3. Tests of the system with the
Apache JMeter

Th e implementation of the server side of the solution was done
in c++ language. Both the calculation server, as well as the proxy
server are multithreaded, enabling to serve multiple users at the
same time. Th e tool that we used to measure how the solution
is able to handle a load of many concurrent users is the JMeter
created by Apache (see [7]).

Th e Apache JMeter is a testing tool that allows us to analyze a
throughput of internet services and databases via such protocols
as TCP/IP or FTP. With this tool one can measure response times,
the infl uence of the volume of the requests handled, the amount
of data sent and received. It is written in Java and therefore is fully
portable and is an appropriate tool to measure the eff ectiveness of
the implementation of a client-solution deployed on any platform.

Th e usage of the Apache JMeter in our application for the
system testing relies on the creation of the parallel threads which
send requests to the tested servers. Th en the performance report
is created. To generate requests from JMeter threads one has to
defi ne their message content and specify a number of messages
that are to be sent to the tested server in a prescribed period of
time. In this work the JMeter tool is used to test the availability of
the solution, scalability and to get the estimation of how to make a
load balancing of the system.

3.1. Tests description

To determine the performance of the entire system, each
component needed to be tested separately. Based on the result of
the tests an overview can be created showing which component
is the slowest. Th ereby an assessment of the number of processed
requests at once is possible as well as a further optimization of the
whole system.

All tests presented in this section were carried out on a low cost
machine, i.e., a computer with AMD E2-3000M APU processor,

with 2-cores, 2GHZ with 4GB RAM SODIMM DDR3. Such a choice
was intentionally done to have an insight into the future behavior of
low cost machines as part of the calculation cluster implementing
the fi nal version of the system (c.f. [1], [2]). During testing each
application worked on an individual computer communicating
wirelessly via a LAN network, so delays associated with the load
of global network were not taken into account. A JMeter tool was
tracking response times of each application and their CPU usage,
based on the results the charts positioned below were created
(Figure 6, Figure 7 and Figure 8).

3.2. Tests of the server proxy only

For the implementation of the proxy server the following
scenarios were tested. Responsiveness of the proxy server itself
(without the calculation server) was tested on the sequence of tests
with the JMeter for

• 100 requests per 1 minute,
• 200 requests per 1 minute,
• 300 requests per 1 minute,
• 400 requests per 1 minute,
• 500 requests per 1 minute.

Fig. 6. 300 requests to the proxy server per minute: a) number
of seconds needed to serve a request from the client
applications, b) a histogram of the service time for requests,
c) a percentile plot for responses, d) a scan of a period of 1
minute – a response time on Y coordinate [own study].

Th e performance of the proxy server was mainly aff ected by
the number of requests received from the client application and
size of database content. Th e greater number of data contained in
the database resulted in a longer retrieval time, which caused that
the handling of further incoming requests took longer to complete.
However, the use of a database on a proxy server, buff ering designated
routes, is still much more effi cient than performing additional
calculations on a computing server.

M. BAZAN, T. JANICZEK, K. HALAWA, R. DUDEK, Ł. RUDAWSKI

7Volume 10 • Issue 1 • February 2017

3.3. Tests of the calculation server only

To test the calculation server only a sequence of tests consisting
of considerably fewer requests were carried out. Th is is due to the
fact that considerably fewer requests will come to the calculation
server because of the caching on the proxy server. Th erefore test
scenarios covered

• 25 requests per 1 minute,
• 50 requests per 1 minute,
• 100 requests per 1 minute.

Fig. 7. a), b) 50s request per 1 minute to the calculation server; c), d)
100 requests per 1 minute to the calculation server. As one
can see a) and c) show a saturation eff ect – the time needed
to serve requests constantly increases [own study].

Figure 7 shows results for the cases of 50 and 100 requests per
1 minute. One can see that such an overload is too much, because
the response time increases during the whole time. Th e saturation
point for the calculation server was about 25 requests per 1 minute.

3.4. Tests of the whole system

Th e third test of the server side of the implemented system was
to measure responsiveness of the calculation server when the request
came from the client application through the proxy server. Aft er the
calculation of the route is completed the response with appointed
route is transmitted to the proxy server, which sends it back to the
mobile application. We performed the search for a level of cached
requests with respect to the total number of requests served by the
proxy server, so that the system manages to handle all requests and is
not overloaded. As parameters of the optimization we used

• the percentage of the number of messages a that the proxy
server handled using its cache,

• the number of requests to the proxy server b.

We carried out tests for boundary conditions i.e., sending
requests to the computing server via proxy server and awaiting for
a response in scenarios where

• 90% requests is served by the proxy server cache,
• 80% requests is served by the proxy server cache.

Fig. 8. All plots contain aggregated graphs for the proxy server as
well as for the calculation server for 300 requests per minute
where the system is slightly overloaded; 80% percent of
these requests are served by the proxy server, the remaining
requests go to calculation server a) response times over time,
b) histogram of the response times c) response times per
active request d) active requests over time [own study].

We found that the best performance is obtained for a = 88%
to be served by the proxy server cache and not more that b = 200
requests per minute. Figure 8 shows plots with measurements
from the JMeter for this confi guration.

3. Conclusion
In this paper we presented a prototype of traffi c redirection

system that allows us to redirect vehicles via the fastest routes
through the city. The system consists of the calculation server
responsible for the shortest path calculations based on the current
state of the traffi c, the proxy server responsible for sending requests
to the calculation server, or retrieve previously calculated results
from its local cache and from mobile applications installed in
vehicles of the end users. Th e two threaded bi-directional Dijkstra
is used for fi nding the fastest route. We presented the results of
the tests for responsiveness of the prototype carried out using the
Apache JMeter. Th e prototype intentionally was tested on a low-
cost machine. Th e tests show that the optimal load of the system
is about 200 requests per minute to the proxy server and about
12% of all messages arriving to the proxy server is sent further
to the calculation server to calculate a new route. Th e majority
of the responses for requests i.e., 88% is retrieved from the local
cache. Th ese results show that if the calculation server consists of
20 replicated inexpensive nodes then assuming around 90% of
repeated requests (that may be served by the cache of the proxy
server) about 4000 vehicles (about 7% of the number of vehicles at
one time during morning rush hour in Wrocław – about 56,000 –
the value calculated using methods in [15] based on data published
in [16]) can eff ectively use the system within the period of one

DESIGN AND DEVELOPMENT OF A ROAD TRAFFIC REDIRECTION SYSTEM

© Copyright by PSTT , All rights reserved. 20178

minute. It means that for a period of 10 minutes approximately
70% of all vehicles on roads in Wrocław in the morning rush hour
could be handled. Another conclusion from these results is that we
can now propose a load balancing strategy based on FIFO queues
so that not all requests at once, from those that need to go, are
forwarded to the calculation server but are queued on the proxy
server until there is no calculation node with fewer than 3 parallel
tasks running at a time (see Figure 8). The load balancing strategy
however is a subject for further study.

Acknowledgements

The work in this paper was partially financed from grant
0401/0230/16.

Bibliography
[1]	 BAZAN M., et al.: Multithreaded enhancements of the Dijkstra

algorithm for route optimization in urban networks, Archives
on Transport Systems Telematics, Vol. 9, Issue 2, 2016, pp. 3-7.

[2]	 CORMEN, T. H., et. al.: Introduction to Algorithms. MIT
Press, 2nd edition, 2001.

[3]	 SCHRIJVER, A.: Combinatorial Optimization — Polyhedra
and Efficiency. Algorithms and Combinatorics 24. Springer.
ISBN 3-540-20456-3, vol. A, sect.7.5b, p.103, 2004.

[4]	 BAUER, R.: On the Complexity of Partitioning Graphs for
Arc-Flags, Journal of Graph Algorithms and Applications,
vol. 17, no. 3, 2013, pp. 265–299.

[5]	 ZHAN, F.B., NOON, C.E.: Shortest Path Algorithms: An
Evaluation using Real Road Networks. Transp. Sci., 32, 1998,
pp. 65–73.

[6]	 KOZYNTSEV, A.N.: www14.informatik.tu-muenchen.de/
lehre/2010SS/sarntal/07_kozyncev_slides.pdf, Facultat fur
Informatic, TU Munchen, 2010, [date of access: 26.02.2016].

[7]	 ERINLE, B.: JMeter Cookbook, Packt, 2014.
[8]	 https://www.tomtom.com/ [date of access: 27.02.2017].
[9]	 http://www.automapa.pl/pl/start/ [date of access: 27.02.2017].
[10]	http://maps.google.com [date of access: 27.02.2017].
[11]	MAGED, M., et. al.: Scale-up x Scale-out: A Case Study

using Nutch/Lucene. 2007 IEEE International Parallel
and Distributed Processing Symposium. p. 1. doi:10.1109/
IPDPS.2007.370631 [date of access: 26.03.2007].

[12]	HELBING, D.: Derivation of a fundamental diagram for
urban traffic flow, The European Physical Journal B, July
2009, Volume 70, Issue 2, pp 229-241.

[13]	PETZOLD, Ch.: Creating Mobile Apps with Xamarin.Forms,
Microsoft 2015.

[14]	SZYMAŃSKI, A., et al.: Two methods of calculation of the
origination destination matrix of an urban area, Raport
W04/P-007/15, Wrocław University of Technology, 2015.

[15]	Biuro inżynierii transportu, Pentor Research International,
Kompleksowe Badania Ruchu - Wrocław 2010, (in Polish).

[16]	WHITE, T.: Hadoop: The Definitive Guide: Storage and
Analysis at Internet Scale, 4th Edition, O’Reilly, 2015.

[17]	DUBOIS, P.: MySQL (5th Edition) (Developer’s Library),
Addison-Wesley, 2013.

[18]	OWENS, M., ALEN, G.: The Definitive Guide to SQLite,
Apress, 2010.

[19]	DAS, S.: SQLite for Mobile Apps Simplified, Amazon, 2014.
[20]	HALAWA, K., et al.: Road traffic predictions across major

city intersections using multilayer perceptrons and data from
multiple intersections located in various places, IET Intelligent
Transport Systems 10 (7), 469-475, 2016.

[21]	CISKOWSKI P., et al.: Estimation of travel time in the city
based on intelligent transportation system traffic data with
the use of neural networks, Dependability Engineering and
Complex Systems, 85-95, 2016.

