PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

The Attempt of the Low-Cycle Fatigue Life Description of Chosen Creep-Resistant Steels Under Mechanical and Thermal Interactions

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study focuses on the problem of determination of low-cycle fatigue properties for the chosen group of creep-resistant steels used in the power and chemical industries. It tries to find the parameter which would describe well the fatigue life and take into account mechanical loads and temperature. The results of LCF tests have been presented in the paper. New parameter P has been introduced. This parameter joins a plastic strain range, a stress range and temperature. The fatigue life has been predicted versus parameter P. The comparison of the predicted and observed values of fatigue life shows the agreement between these values. The method of fatigue life prediction formulated in this way is expected to describe the behavior of materials under thermo-mechanical fatigue.
Twórcy
autor
  • Silesian University of Technology, Institute of Metals Technology, Katowice, Poland
autor
  • Silesian University of Technology, Institute of Metals Technology, Katowice, Poland
Bibliografia
  • [1] G. A. Webster, R. A. Ainsworth, High Temperature Component Life Assessment, Chapman & Hall, 1994 London.
  • [2] FITNET Report (European Fitness-for-service Network) Edited by M. Kocak, S. Webster, J. J. Janosch, R. A. Ainsworth, R. Koers, Contract No. G1RT-CT-2001-05071, 2006.
  • [3] Nuclear Electric Ltd, Assessment Procedure for the High Temperature Response of Structure, Proc. R5 Issue 2, UK, 1997.
  • [4] A. Hernas, Żarowytrzymałość stali i stopów, Wydawnictwo Politechniki Śląskiej, 1999 Gliwice (in Polish).
  • [5] RWTÜV Replicas for parts under creep according to TRD 508. Recommendation, 451-1983/1, 1983.
  • [6] S. Webster, A. Bannister, Structural Integrity Assessment Procedure for Europe – of the SINTAP programme overview, Engineering Fracture Mechanics, Elsevier Science 67, 6, 481-514 (2000).
  • [7] A. G. Miller, R. A. Ainsworth, A. R. Dowling and A. T. Stewart Background to and validation of CEGB report R/H/R6 – version 3. Int. J. Pres. Vessels Pip. 32, 105-196 (1988).
  • [8] K. M. Nikbin, G. A. Webster, C. E. Turner, A Comparison of Methods of Correlating Creep Crack Growth, Fracture 2, 1977.
  • [9] A. J. Fookes, D. J. Smith Using a Strain Based Failure Assessment Diagram for Creep-Brittle Materials, 2th International HIDA Conference, 2000 Stuttgart.
  • [10] S. S. Manson, G. R. Halford, Fatigue and durability of materials at high temperatures, ASTM International (2009).
  • [11] S. S. Manson, G.R. Halford, Fatigue and durability of structural materials. ASTM International (2006).
  • [12] S. S. Manson, Thermal Stress and Low Cycle Fatigue, 1966 New York: McGraw-Hill.
  • [13] S. Kocańda, J. Szala, The basics of fatigue calculations (Podstawy obliczeń zmęczeniowych – in Polish), PWN Warszawa 1997.
  • [14] M. R. Mitchell, R. W Landgraf (eds.), Advances in fatigue lifetime predictive techniques, ASTM STP 122, 1991.
  • [15] Z. W. Huang, Z. G. Wang, S. J. Zhu, F. H. Yuan, F. G. Wang, Thermomechanical fatigue behavior and life prediction of a cast nickel-based superalloy, Materials Science and Engineering A 432, 308-316 (2006).
Uwagi
EN
This paper was created with the financial support of Association of Graduates of the Faculty of Metallurgy and Materials Engineering of Silesian University of Technology, Poland.
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-865718a5-e6bb-47c4-8e2a-7487ebec5cd0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.