Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Nanosilica - bioperspective and industrial potential - part II
Języki publikacji
Abstrakty
W ostatnich latach szczególną uwagę poświęca się cząstkom o wymiarach nano, które mają szeroki zakres zastosowań w przemyśle spożywczym, medycznym, ceramicznym i innych. Jedną z takich nanocząstek jest nanokrzemionka, której synteza biometodami zyskuje coraz większe zainteresowanie ze względu na ich ekonomiczność oraz neutralność wobec środowiska. W niniejszej publikacji przedstawiono formy występowania nanokrzemionki wykorzystywane podczas biokonwersji roślin, które są bogate w ten cenny składnik. Zaprezentowano również mechanizm jej biopozyskiwania w porównaniu z metodami chemicznymi i fizycznymi, a także jej szeroki zakres aplikacyjny.
In recent years special attention has been paid to nanoscale particles that have a wide range of applications in the food, medical, ceramic and other industries. Such a nanoparticle is nanosilica, which biosynthesis is gaining increasing interest due to its cost effectiveness and environmental neutrality. The paper presents the form of the presence of nanosilica used during the bioconversion of plants that are rich in this valuable product. The mechanism of its bioacquisition is also presented in comparison with chemical and physical methods, as well as its wide range of applicability.
Słowa kluczowe
Wydawca
Czasopismo
Rocznik
Tom
Strony
32--36
Opis fizyczny
Bibliogr. 63 poz.
Twórcy
autor
- Zakład Chemii Bioorganicznej, Wydział Chemiczny, Politechnika Wrocławska
autor
- Zakład Chemii Bioorganicznej, Wydział Chemiczny, Politechnika Wrocławska
autor
- Zakład Chemii Bioorganicznej, Wydział Chemiczny, Politechnika Wrocławska
Bibliografia
- 1. Barik T. K., Sahu B., Swain V.: Nanosilica – from medicine to pest control. „Parasitology Research”, 2008, 103 (2), 253-258.
- 2. Kaleta A., Kołodziej A.: Zastosowanie nanocząstek w budownictwie. „Roczniki Inżynierii Budowlanej”, 2012, 12, 25-28.
- 3. Jampilek J., Kràĺovà K.: Application of nanotechnology in agriculture and food industry, its prospects and risks. „Ecological Chemistry and Engineering”, 2015, 22 (3), 321-361.
- 4. Peters R.J.B., Bouwmeester H., Gottardo S., Amenta V., Arena M. et al.: Nanomaterials for products and application in agriculture, feed and food. „Trends in Food Science and Technology”; 2016, 54, 155-164.
- 5. Bansal V.: Fungus-mediated biosynthesis of oxides nanoparticles and composites. PhD thesis, 2006.
- 6. Rao C. N.R., Cheetham A.K.: Science and technology of nanomaterials: Current status and future prospects. „Journal of Materials Chemistry”, 2001, 11, 2887-2894.
- 7. Dunkan T.V.: Applications of nanotechnology in food packaging and food safety: Barrier materials, antimicrobials and sensors. „Journal of Colloid and Interface Science”, 2011, 363 (1), 1-24.
- 8. Dick K., Dhanasekaran T., Zhang Z., Meisel D.: Size-dependent melting of silica-encapsulated gold nanoparticles. „Journal of the American Chemical Society”, 2002, 124 (10), 2312-2317.
- 9. Burda C., Chen X., Narayanan R., El-Sayed M.A.: Chemistry and properties of nanocrystals of different shapes. „Chemical Reviews”, 2005, 105 (4), 1025-1102.
- 10. Rai M., Ribeiro C., Mattoso L., Duran N.: Nanotechnologies in food and agriculture. Springer, 2015.
- 11. Nehoff H., Parayath N.N., Domanovitch L., Taurin S., Greish K.: Nanomedicine for drug targeting: strategies beyond the enhanced permeability and retention effect. „International Journal of Nanomedicine”, 2014, 9, 2539-2555.
- 12. Dolatabadi J. E. N., Guardia M.: Applications of diatoms and silica nanotechnology in biosensing, drug and gene delivery, and formation of complex metal nanostructures. „Trends in Analytical Chemistry”, 2011, 30 (9), 1538-1548.
- 13. Bansal V., Ahmad A., Sastry M.: Fungus-Mediated Biotransformation of Amorphous Silica in Rice Husk to Nanocrystalline Silica. „Journal of the American Chemical Society”, 2006, 128 (43), 14059-14066.
- 14. Chen H., Wang F., Zhang C., Shi Y., Jin G., Yuan S.: Preparation of nano-silica materials: The concept from wheat straw. „Journal of Non-Crystalline Solids”, 2010, 356, 2781-2785.
- 15. Law C., Exley C.: New insight into silica deposition in horsetail (Equisetum arvense). „BMC Plant Biology”, 2011, 11(112), 1-9.
- 16. Perry C.C.: Silicification: the processes by which organisms capture and mineralize silica. „Reviews in Mineralogy and Geochemistry”, 2003, 53, 291-327.
- 17. Neethirajan S., Gordon R., Wang L.: Potential of silica bodies (phytoliths) for nanotechnology. „Trends in Biotechnology”, 2009, 27 (8), 461-467.
- 18. Derry L.A., Kurtz A.C., Ziegler K., Chadwick O.A.: Biological control of terrestrial silica cycling and export fluxes to watersheds. „Nature”, 2005, 433, 728-731.
- 19. Ehrlich H., Demadis K.D., Pokrovsky O.S., Koutsoukos P.G.: Modern Views on Desilicification: Biosilica and Abiotic Silica Dissolution in Natural and Artificial Environments.„Chemical Reviews”, 2010, 110 (8), 4656-4689.
- 20. Fraysse F., Pokrovsky O.S., Schott J., Meunier J.D.: Surface chemistry and reactivity of plant phytoliths in aqueous solutions. „Chemical Geology”, 2009, 258 (3-4), 197-206.
- 21. Coradin T., Desclés J., Lopez P.J., Luo F.Z.: Silicon in the photosynthetic lineages: molecular mechanisms for uptake and deposition.„Floriculture, Ornamental and Plant Biotechnology”, 2006, 4, 238-244.
- 22. Hodson, M.J., White P.J., Mead A., Broadley M.R.: Phylogenetic variation in the silicon composition of plants. „Annals of Botany”, 2005, 96, 1027-1046.
- 23. Bansal V., Rautaray D., Bharde A., Ahire K., Sanyal A., Ahmad A., Sastry M.: Fungus-mediated biosynthesis of silica and titania particles. „Journal of Materials Chemistry”, 2005, 15, 2583-2589.
- 24. Balamurugan M., Saravanan S.: Producing nanosilica from Sorghum vulgare seed heads. „Powder Technology”, 2012, 224, 345-350.
- 25. Jeziórska R., Oewierz-Motysia B., Zielecka M., Studziński M.: Nanokompozyty poliamid/nanokrzemionka o budowie sferycznej.„Polimery”, 2009, 10, 647-656.
- 26. Gunko V.M., Mironyuk I.F. et al.: Morphology and surface properties of fumed silicas. „Journal of Colloid and Interface Science”, 2005, 289(2), 427-445.
- 27. Kaur T., Singh G. P., Kaur G., Kaur S., Kaur Gill P.: Synthesis of biogenic silicon/silica (Si/ SiO2) nanocomposites from rice husks and wheat bran through various microorganisms. „Materials Research Express”, 2016, 3 (8), 1-11.
- 28. Chen H., Wang W., Martin J.C., Oliphant A.J., Doerr P.A., Xu J.F., DeBorn K.M., Chen C., Sun L.: Extraction of lignocellulose and synthesis of porous silica nanoparticles from rice husks: A comprehensive utilization of rice husk biomass. „ACS Sustainable Chemistry and Engineering”, 2013, 1 (2), 254-259.
- 29. Holzhüter G., Narayanan K., Gerber T.: Structure of silica in Equisetum arvense. „Analytical and Bioanalytical Chemistry”, 2003, 376 (4), 512-517.
- 30. Mor S., Manchanda C.K., Kansal S.K., Ravindra K.: Nanosilica extraction from processed agricultural residue using green technology. „Journal of Cleaner Production”, 2017, 143, 1284-1290.
- 31. Pineda T., Soares C.H.L., Hotza D., Casas-Botero A.E., Ramírez-Carmona M., Torres-Taborda M.: Extracellular synthesis of silica oxide particles by Fusarium oxysporum from rice husk ash. „Advanced Powder Technology”, 2012, 727-728, 1153-1157.
- 32. Martínez J.D., Pineda T., López J.P., Betancur M.: Assessment of the rice husk lean-combustion in a bubbling fluidized bed for the production of amorphous silica-rich ash.„Energy”, 2011, 36, 3846-3854.
- 33. Khan S.A., Uddin I., Moeez S., Ahmad A.: Fungus-Mediated Preferential Bioleaching of Waste Material Such as Fly Ash as a Means of Producing Extracellular, Protein Capped, Fluorescent and Water Soluble Silica Nanoparticles. „Plos One”, 2014, 9(9), 1075957.1-1075957.7.
- 34. Pineda-Vásquez T.G., Casas-Botero A.E., Ramírez-Carmona M.E., Torres-Taborda M.M., Soares C.H.L., Hotza D.: Biogeneration of Silica Nanoparticles from Rice Husk Ash Using Fusarium oxysporum in Two Different Growth Media. „Industrial and Engineering Chemistry Research”, 2014, 53 (17), 6959-6965.
- 35. Singh S., Bhatta U.M., Satyam P.V., Dhawan A., Sastry M., Prasad B.L.V.: Bacterial synthesis of silicon/silica nanocomposites. „Journal of Materials Chemistry”, 2008, 18, 2601-2606.
- 36. Bansal V., Sanyal A., Rautaray D., Ahmad A., Sastry M.: Bioleaching of Sand by the Fungus Fusarium oxysporum as a Means of Producing Extracellular Silica Nanoparticles. „Advanced Materials”, 2005, 17 (7), 889-892.
- 37. Lim J.S., Manan Z.A., Alwi S.R.W., Hashim H.: A review on utilisation of biomass from rice industry as a source of renewable energy. „Renewable and Sustainable Energy Reviews”, 2012, 16 (5), 3084-3094.
- 38. Acosta E.: Bioavailability of nanoparticles in nutrient and nutraceutical delivery.„Current Opinion in Colloid and Interface Science”, 2009, 14(1), 3-15.
- 39. Dekkers S., Krystek P., Peters R.J., Lankveld D.P., Bokkers B.G., Van Hoeven-Arentzen P.H., Bouwmeester H., Oomen A.G.: Presence and risks of nanosilica in food products. „Nanotoxicology”, 2011, 5 (3), 393-405.
- 40. Głód D., Adamczak M., Bednarski W.: Wybrane aspekty zastosowania nanotechnologii w produkcji żywności.„Nauka. Technologia. Jakość”, 2014, 5 (96), 36-52.
- 41. Łopacka J.: Nanocząstki wykorzystywane w celu poprawy właściwości fizycznych kompozytów polimerowych stosowanych jako materiały opakowaniowe do żywności. „Polimery”, 2013, 58 (11-12), 864-868.
- 42. Julkapli N. M., Bagheri S.: Developments in nano-additives for paper industry. „Journal of Wood Science”, 2016, 62 (2), 117-130.
- 43. Liu Q.X., Xu W.C., Lv Y.B., Li J.L.: Application of precipitated silica in low basis weight newspaper. „Advanced Materials Research”, 2011, 236-238, 1107-1111.
- 44. Shih J.Y., Chang T.P., Hsiao T.C.: Effect of Nanosilica on Characterization of Portland Cement Composite. „Materials Science and Engineering”, 2006, 424 (1-2), 266-274.
- 45. Palla R., Karade S.R., Mishra G., Sharma U., Singh L.P.: High strength sustainable concrete using silica nanoparticles. „Construction and Building Materials”, 2017, 138, 285-295.
- 46. Przybyła M., Michta A.: Wpływ dodatku modyfikowanej nanokrzemionki na poprawę własności mechanicznych kompozytu ceramika-polimer. „Materiały Ceramiczne”, 2013, 65 (2), 222-226.
- 47. Zhao X., Hilliard L.R., Mechery S.J., Wang Y., Bagwe R.P., Jin S., Tan W.: A rapid bioassay for single bacterial cell quantitation using bioconjugated nanoparticles. „Proceedings of the National Academy of Sciences”, 2004, 101 (42), 15027-1532.
- 48. Baek S., Singh R.K., Khanal D., Patel K.D., Lee E.J., Leong K.W., Chrzanowski W., Kim H.W.: Smart multifunctional drug delivery towards anticancer therapy harmonized in mesoporous nanoparticles. „Nanoscale”, 2015, 7, 14191-14216.
- 49. Singh P., Srivastavaa S., Chakrabarti P., Singh S.K.: Nanosilica based electrochemical biosensor: A novel approach for the detection of platelet-derived microparticles.„Sensors and Actuators”, 2017, 240, 322-329.
- 50. Zamora P. Narvàez A., Domínguez E.: Enzyme-modified nanoparticles using biomimetically synthesized silica. „Bioelectrochemistry”, 2009, 76 (1-2), 100-106.
- 51. Liu D., Yang F., Xiong F., Gu N.: The Smart Drug Delivery System and Its Clinical Potential. „Theranostics”, 2016, 6 (9), 1306-1323.
- 52. Hrubý M., Filippov S. K., Štěpánek P.: Smart polymers in drug delivery systems on crossroads: Which way deserves following? „European Polymer Journal”, 2015, 65, 82-97.
- 53. Giret S., Wong Chi Man M., Carcel C.: Mesoporous – Silica – Functionalized Nanoparticles for Drug Delivery. „Chemistry – A European Journal”, 2015, 21 (40), 13850-12865.
- 54. DiSanto R.M., Subramanian V., Gu Z.: Recent advances in nanotechnology for diabetes treatment. „Wiley Periodicals”, 2015, 7 (4), 548-564.
- 55. Chen M., Huang C., He C., Zhu W., Xu Y., Lu Y.: A glucose-responsive controlled release system using glucose oxidase-gated mesoporous silica nanocontainers. „Chemical Communications”, 2012, 48, 9522-9524.
- 56. Sun L., Zhang X., Wu Z., Zheng C., Li C.: Oral glucose-and pH-sensitive nanocarriers for simulating insulin release in vivo. „Polymer Chemistry”, 2014, 5, 1999-2009.
- 57. Pascual L., Sancenón F., Martínez-Mánez R., Barja-Fidalgo T. C., Vargas da Silva S., Sousa-Batista A., Cerqueira-Coutinho C., Santos-Oliveira R.: Mesoporous silica as multiple nanoparticles systems for inflammation imaging as nano-radiopharmaceuticals. „Microporous and Mesoporous Materials”, 2017, 239, 426-431.
- 58. Sun Q., Wang Q., Rao B.K., Jena P.: Electronic structure and bonding of Au on a SiO2 Cluster: A nanobullet for tumors. „Physical Review Letters”, 2004, 93 (18), 186803.1-186803.4.
- 59. Bharali D.J., Klejbor I., Stachowiak E.K., Dutta P., Roy I., Kaur N., Bergey E.J., Prasad P.N., Stachowiak M.K.: Organically modified silica nanoparticles: a nonviral vector for in vivo gene delivery and expression in the brain. „Proc. Natl. Acad. Sci. USA”, 2005, 102 (32), 11539-11544.
- 60. Roy I., Ohulchanskyy T.Y., Bharali D.J., Pudavar H.E., Mistretta R.A., Kaur N., Prasad P.N.: Optical tracking of organically modified silica nanoparticles as DNA carriers: A nonviral, nanomedicine approach for gene delivery. „Proc. Natl. Acad. Sci. USA”, 2005, 102 (2), 279-284.
- 61. Torney F., Trewyn B.G., Lin V.S.Y., Wang K.: Mesoporous silica nanoparticles deliver DNA and chemicals into plants.„Nature Nanotechnology”, 2007, 2, 295-300.
- 62. Ulrichs C., Krause F., Rocksch T., Goswami A., Mewis I.: Electrostatic application of inert silica dust-based insecticides onto plant surfaces. „Communications in Agricultural and Applied Biological Sciences”, 2006, 71, 171-178.
- 63. Majumder D.D., Banerjee R., Mukhopadhayay S.K., Ulrichs C., Mewis I., Samanta A., Das A., Adhikary S., Goswami A.: Nanofabricated Materials in Cancer Treatment and Agri-biotech Applications: Buckyballs in Quantum Holy Grails. „IETE Journal of Research”, 2006, 52 (5), 339-356.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-8655dc9a-b9a7-4483-a5eb-27b437b5f41a