PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental Studies on Advanced Sheet Explosive Formulations Based on 2,4,6,8,10,12-Hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) and Hydroxyl Terminated Polybutadiene (HTPB), and Comparison with a RDX-based System

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present investigation reports the use of 2,4,6,8,10,12-hexanitro2,4,6,8,10,12-hexaazaisowurtzitane (CL-20) in sheet explosive formulations. In this study, hydroxyl terminated polybutadiene (HTPB) based sheet explosives were prepared incorporating the powerful explosive CL-20 as a partial replacement for hexahydro-1,3,5-trinitro-1,3,5-triazine(RDX). The effects of incorporating CL-20 on the performance, sensitivity, thermal and mechanical properties of the sheet explosive compositions are reported. Sheet explosive formulation containing 80% of RDX and 20% of HTPB-binder was studied as control sample. HTPBbinder consisted of 12% HTPB, 2.9% dioctyl adipate (DOA) and 5.1% dioctyl phthalate (DOP). HTPB was cured with 4,4’-methylene diphenyl di-isocyanate (MDI) to form urethane linkages. The incorporation of 20% of CL-20 in place of RDX led to a remarkable increase in the velocity of detonation (VOD), of the order of 7680 m/s, and to better mechanical properties in terms of tensile strength (1.14 MPa) compared to the control formulation [RDX /HTPB-binder (80/20)]. The 20% CL-20 incorporated sheet explosive formulation also showed remarkable increases in impact and shock sensitivity. Thermal analysis of the sheet explosive compositions has also been carried out using differential scanning calorimetry (DSC).
Rocznik
Strony
135--147
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
autor
  • High Energy Materials Research Laboratory, Defence Research and Development Organization (DRDO), Ministry of Defence, Sutarwadi, Pune-411 021, India
  • High Energy Materials Research Laboratory, Defence Research and Development Organization (DRDO), Ministry of Defence, Sutarwadi, Pune-411 021, India
autor
  • High Energy Materials Research Laboratory, Defence Research and Development Organization (DRDO), Ministry of Defence, Sutarwadi, Pune-411 021, India
autor
  • High Energy Materials Research Laboratory, Defence Research and Development Organization (DRDO), Ministry of Defence, Sutarwadi, Pune-411 021, India
autor
  • High Energy Materials Research Laboratory, Defence Research and Development Organization (DRDO), Ministry of Defence, Sutarwadi, Pune-411 021, India
Bibliografia
  • [1] Nouguez B., Mahe B., Vignaud P. O., Cast PBX Related Technologies for IM Shells and Warheads, Sci. & Tech. Energet. Mater., 2009, 70(5-6), 135-139.
  • [2] Li Gui-Yang and Koenig J.L., A Review of Rubber Oxidation, Rubber Chem. Technol., 2005, 78(3), 355.
  • [3] Nath T., Asthana S.N., Gharia J.S., Studies on RDX Based Sheet Explosives with Estane Binders, Theory and Practices of Energetic Materials, Vol. II, Shenzhen, Guangdong, China, 1997.
  • [4] Mukundan T., Nair J.K., Purandare G.N., Talawar M.B., Nath T., Asthana S.N., Low Vulnerable Sheet Explosive Based on 3-Nitro-1,2,4-triazol-5-one, J. Propul. Power, 2006, 22(6), 1348-1352.
  • [5] Bellerby J.M., Kiriatnikon C.H., Explosive Binder Adhesion and Dewetting in Nitramine-filled Energtic Materials, Propellants Explos. Pyrotech., 1989, 14(2), 82-85.
  • [6] Wang J., An C., Li G., Liang L., Xu W., Wen K., Preparation and Performances of Castable HTPB/CL-20 Booster Explosives, Propellants Explos. Pyrotech., 2011, 36(1), 34-41.
  • [7] Joseph M.D., Jangid S.K., Satpute R.S., Polke B.G., Nath T., Asthana S.N., Rao A.S., Studies on Advanced RDX/TATB Based Low Vulnerable Sheet Explosives with HTPB Binder, Propellants Explos. Pyrotech., 2009, 34(4), 326-330.
  • [8] Rinehart J. S., Pearson J., Explosive Working of Metals, Pergamon Press, New York, 1963, 149-179; Library of Congress Catalog card number 62-22040.
  • [9] Warford J. M., Reactive Armour-New Life for Soviet Tanks, Armor, 1988, 97(1), 6.
  • [10] Yadav H.S., Bohra B.M., Joshi G.D., Sundaram S.G., Kamat P.V., Study on Basic Mechanism of Reactive Armour, Def. Sci. J., 1995, 45(3), 207-212.
  • [11] Yadav H.S., Flyer Plate Motion by Thin Sheet of Explosive, Propellants Explos. Pyrotech., 1988, 13, 17-20.
  • [12] Held M., Disturbance of Shaped Charge Jets by Bulging Armour, Propellants Explos. Pyrotech., 2001, 26, 191-195.
  • [13] Geetha M., Nair U.R., Sarwade D.B., Gore G.M., Asthana S.N., Singh H., Studies on CL-20: the Most Powerful High Energy Material, J. Therm. Anal. Calorim., 2003, 73(3), 913-922.
  • [14] Nielsen A.T., Nissan P.A., Polynitropolyaza Caged Explosives, Part 5, Naval Weapon Center Technical Publication, 1986, 6692.
  • [15] Foltz M.F., Thermal Stability of Hexanitrohexaazaisowurtzitane in Estane Formulation, Propellants Explos. Pyrotech., 1994, 19(2), 63-69.
  • [16] Bircher H.R., Mader P., Mathieu J., Properties of CL-20 Based High Explosives, 29th Int. Annu. Conf. ICT, Karlsruhe, Germany, 1998, 94, 1-14.
  • [17] Nair U.R., Sivabalan R., Gore G.M., Geeta M., Asthana S.N., Singh H., Hexanitrohexaazaisowurtzitane (CL-20) and CL-20 Based Formulations, Combust. Explos. Shock Waves (Engl. Transl.), 2005, 41(2), 121-132.
  • [18] Roux B.L., Golfier M., Lecume S., Development of a Cast Plastic Bonded Explosive with High CL-20 Content, SNPE Meterioux Energetique Centre de Recherches du Bouchet, France, 2006.
  • [19] Talawar M.B., Sivabalan R., Polke B.G., Nair U.R., Gore G.M, Asthana S.N., Establishment of Process Technology for the Manufacture of Dinitrogen Pentoxide and its Utility for the Synthesis of Most Powerful Explosive of Today-CL-20, J. Hazard. Mater., 2005, 124(1-3), 153-164.
  • [20] Ghosh M., Venkatesan V., Sikder A.K., Sikder N., Preparation and Characterization of ε-CL-20 by Solvent Evaporation and Precipitation Methods, Def. Sci. J., 2012, 62(6), 390-398.
  • [21] Julius Peters K.G., Production Programme of ‘Julius Peters’ Company for the Member of MBB Course, 1981.
  • [22] Hirosaki Y., Ishida T., Hattori K., Sakai H., Card Gap Test of Emulsion Explosive, J. Ind. Explos. Soc., Jpn (Kogyo Kayaku), 1982, 43, 323.
  • [23] Yadav H.S., Nath T., Sundaram S.G., Kamath P.V., Kulkarni M.W., Shock Initiation of Sheet Explosive, Propellants Explos. Pyrotech., 1994, 19(1), 26-31.
  • [24] Kissinger H.E., Variation of Peak Temperature with Heating Rate in Differential Thermal Analysis, J. Res. Natl. Bur. Stand. (U.S.), 1956, 57(4) 217-221.
  • [25] Kissinger H.E., Reaction Kinetics in Differential Thermal Analysis, Anal. Chem., 1957, 29(11), 1702-1706.
  • [26] Lonescu M., Chemistry and Technology of Polyols for Polyurethanes, Rapra Technology Limited, Shropshire, UK, 2005, 13-29; ISBN 1859574912.
  • [27] Zukas J.A., Walters W.P., Explosive Effects and Applications, 1st ed., Springer, New York, 1998, p. 153; ISBN 0387955585.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-86552183-014a-40af-847a-fb6c539db87e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.