PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Evaluating the suitability of plant and crustacean microbiotests for assessing soil toxicity caused by ethylbenzene contamination

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Oszacowanie przydatności mikrobiotestów z roślinami i skorupiakami w ocenie toksyczności gleby spowodowanej zanieczyszczeniem etylobenzenem
Języki publikacji
EN
Abstrakty
EN
Plant and crustacean microbiotests were assessed for their suitability in evaluating soil and groundwater contamination with ethylbenzene (EB) following a railway accident. Bioassays using Lepidium sativum, Sinapis alba, Sorghum saccharatum, Heterocypris incongruens, and Thamnocephalus platyurus were conducted to measure acute toxicity in both naturally and artificially contaminated podzolic soils. Results of direct contact tests showed significant correlations between toxicity endpoints and EB concentrations. In naturally contaminated soils (EB: 67–2865 mg·kg-1), seed germination decreased by 17–52%, and root growth by 55–70%. L. sativum and H. incongruens exhibited the highest sensitivity. T. platyurus also responded to EB in soil pore water and groundwater, although only temporary narcotic effects were observed at lower concentrations (≤76 mg·dm-3). In contrast, artificially spiked soils did not affect seed germination but inhibited root elongation and crustacean growth. These findings highlight the influence of environmental factors, such as contamination duration and soil moisture, on EB toxicity and support the application of microbiotests in evaluating contaminated soils.
PL
Oceniono przydatność mikrobiotestów roślinnych i ze skorupiakami w ocenie skażenia gleb i wód gruntowych etylobenzenem (EB) po katastrofie kolejowej. Przeprowadzono analizy z użyciem biotestów zawierających Lepidium sativum, Sinapis alba, Sorghum saccharatum, Heterocypris incongruens i Thamnocephalus platyurus w celu określenia toksyczności ostrej w glebach bielicowych zanieczyszczonych w środowisku naturalnym oraz w warunkach laboratoryjnych. Wyniki testów bezpośredniego kontaktu wykazały istotne korelacje pomiędzy efektami końcowymi a stężeniami EB. W glebach zanieczyszczonych (EB 67–2865 mg·kg-1) odnotowano spadek kiełkowania nasion o 17-52% i zahamowanie przyrostu korzeni o 55-70%. L. sativum i H. incongruens wykazały najwyższą wrażliwość. T. platyurus również zareagował negatywnie na EB w wodzie porowej gleby i wodach gruntowych, choć przy niższych stężeniach (≤76 mg·dm-3) obserwowano jedynie tym czasowe efekty narkotyczne. Natomiast gleby zanieczyszczone EB w warunkach laboratoryjnych nie wpłynęły na kiełkowanie nasion, ale hamowały wzrost korzeni oraz rozwój skorupiaków. Uzyskane wyniki podkreślają wpływ czynników środowiskowych, takich jak, czas trwania skażenia i wilgotność gleby, na toksyczność EB i wskazują na przydatność stosowania mikrobiotestów w ocenie zanieczyszczonych gleb.
Rocznik
Strony
111--119
Opis fizyczny
Bibliogr. 44 poz., tab., wykr.
Twórcy
  • Institute of Environmental Engineering and Biotechnology, University of Opole, Poland
  • Institute of Biology, University of Opole, Poland
  • Institute of Environmental Engineering and Biotechnology, University of Opole, Poland
  • Institute of Environmental Engineering and Biotechnology, University of Opole, Poland
  • Institute of Environmental Engineering and Biotechnology, University of Opole, Poland
  • Institute of Environmental Engineering and Biotechnology, University of Opole, Poland
Bibliografia
  • 1. Aivalioti, M., Vamvasakis, I. & Gidarakos, E. (2010). BTEX and MTBE adsorption onto raw and thermally modified diatomite. Journal of Hazardous Materials, 178, 1, pp. 136-143. DOI:10.1016/j.jhazmat.2010.01.053
  • 2. Albergaria, J.T., da Conceição, M., Alvim-Ferraz, M. & Delerue-Matos, M.C.F. (2010). Estimation of pollutant partition in sandy soils with different water contents. Environmental Monitoring and Assessment, 171, pp. 171-180. DOI:10.1007/s10661-009-1269-y
  • 3. ATSDR. Toxicological Profile for Ethylbenzene. Atlanta (GA): Agency for Toxic Substances and Disease Registry (US); 2010 Nov. 6, Potential for human exposure. https://www.ncbi.nlm.nih.gov/books/NBK600919
  • 4. Bahar, M.M., Samarasinghe, S.V.A.Ch., Bekele, D. & Naidu, R. (2024). Residual hydrocarbons in long term contaminated soils: implications to risk based management. Environmental Science and Pollution Research, 31, pp. 22759-22773. DOI:10.1007/s11356-024-32593-7
  • 5. Baker, J.A., Matheson, G., Gilron, G. & DeForest, D.K. (2022). Evaluation of Sublethal Toxicity of Nitrite to a Suite of Aquatic Organisms in Support of the Derivation of a Chronic Environmental Water Quality Benchmark. Archives of Environmental Contamination and Toxicology, 83, pp. 1-12. DOI:10.1007/s00244-022-00941-8
  • 6. Balseiro-Romero, M., Kidd, P.S. & Monterroso, C. (2016). Leachability of volatile fuel compounds from contaminated soils and the effect of plant exudates: A comparison of column and batchleaching tests. Journal of Hazardous Materials, 304, pp. 481-489. DOI:10.1016/j.jhazmat.2015.11.017
  • 7. Bergomi, A., Mangia, C., Fermo, P. Genga, A., Comite, V., Guadagnini, S. & Ielpo, P. (2024). Outdoor trends and indoor investigations of volatile organic compounds in two high schools of southern Italy. Air Quality, Atmosphere and Health, 17, pp. 1325-1340. DOI:10.1007/s11869-024-01509-2
  • 8. Blaise, C. & Gagné, F. (2009). Bioassays and biomarkers, two pillars of ecotoxicology: past, present and prospective uses. Fresenius Environmental Bulletin, 18, 2, pp. 135-139.
  • 9. Bobra, A.M., Shiu, W.Y. & Mackay, D. (1983). A predictive correlation for the acute toxicity of hydrocarbons and chlorinated hydrocarbons to the water flea (Daphnia magna). Chemosphere, 12, pp. 1121-1129. DOI:10.1016/0045-6535(83)90118-2
  • 10. Czerniawska-Kusza, I. & Kusza, G. (2011). The potential of the Phytotoxkit microbiotest for hazard evaluation of sediments in eutrophic freshwater ecosystems. Environmental Monitoring and Assessment, 179, pp. 113-121. DOI: 10.1007/s10661-010-1722-y
  • 11. Di Marzio, W. & Saenz, M.E. (2006). QSARS for aromatic hydrocarbons at several trophic levels. Environmental Toxicology 21, 2, pp. 118-124. DOI:10.1002/tox.20163
  • 12. Domínguez-Rodríguez, V.I., Adams, R.H., Sánchez-Madrigal, F., de los S. Pascual-Chablé, J. & Gómez-Cruz, R. (2020). Soil contact bioassay for rapid determination of acute toxicity with Eisenia foetida. Heliyon, 6, 1, e03131. DOI:10.1016/j.heliyon.2019.e03131
  • 13. Durmusoglu, E., Taspinar, F. & Karademir, A. (2010). Health risk assessment of BTEX emission in the landfill environment. Journal of Hazardous Materials, 176, pp. 870-877. DOI:10.1016/j.jhazmat.2009.11.117
  • 14. Gross, S.A., Avens, H.J., Banducci, A.M., Sahmel, J., Panko, J.M. & Tvermoes, B.E. (2013). Analysis of BTEX groundwater concentrations from surface spills associated with hydraulic fracturing operations. Journal of the Air & Waste Management Association, 63, 4, pp. 424-432. DOI:10.1080/10962247.2012.759166
  • 15. Hazrati, S., Rostami, R., Farjaminezhad, M. & Fazlzadeh, M. (2016). Preliminary assessment of BTEX concentrations in indoor air of residential buildings and atmospheric ambient air in Ardabil, Iran. Atmospheric Environment, 132, pp. 91-97. DOI:10.1016/j.atmosenv.2016.02.042
  • 16. He, Y., Jiang, R. & Hou, X. (2023). Responses of maize germination, root morphology and leaf trait to characteristics of lead pollution: a case study. International Journal of Coal Science & Technology, 10, 12. DOI:10.1007/s40789-023-00565-w
  • 17. Hentati, O., Lachhab, R., Ayadi, M. & Ksibi, M. (2013). Toxicity assessment for petroleum-contaminated soil using terrestrial invertebrates and plant bioassays. Environmental Monitoring and Assessment, 185, pp. 2989-2998. DOI:10.1007/s10661-012-2766-y
  • 18. Huang, M., Zhang, W., Hao, L., Wang, Z., Fang, L., Kong, R., Shan, X., Liu, F. & Sheng, L. (2010). Experimental study of photooxidation products of ethylbenzene. Journal of Environmental Sciences, 22, 10, pp. 1570-1575. DOI:10.1016/S1001-0742(09)60291-6
  • 19. Hubálek, T., Vosáhlová, S., Matějů, V., Kováčová, N. & Novotny, C. (2007). Ecotoxicity monitoring of hydrocarbon-contaminated soil during bioremediation: a case study. Archives of Environmental Contamination and Toxicology, 52, pp. 1-7. DOI:10.1007/s00244-006-0030-6
  • 20. IARC. International Agency for Research on Cancer (IARC), 2000. IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. Some Industrial Chemicals, Vol. 77, IARC, Lyon, France.
  • 21. Insam, H. & Seewald, M.S.A. (2010). Volatile organic compounds (VOCs) in soils. Biology and Fertility of Soils, 46, pp. 199-213. DOI:10.1007/s00374-010-0442-3
  • 22. LeBlanc, G.A. (1980). Acute toxicity of priority pollutants to water flea (Daphnia magna). Bulletin of Environmental Contamination and Toxicology, 24, pp. 684-691.
  • 23. Loureiro, S., Ferreira, A.L.G.. Soares, A.M.V.M. & Nogueira, A.J.A. (2005). Evaluation of the toxicity of two soils from Jales Mine (Portugal) using aquatic bioassays. Chemosphere 61, pp. 168-177. DOI:10.1016/j.chemosphere.2005.02.070
  • 24. Łaszczyca, P., Nakonieczny, M. & Kostecki, M. (2023). Ecotoxicological biotests as tools for continuous monitoring of water quality in dam reservoir. Archives of Environmental Protection, 49, 1, pp. 25-38. DOI:10.24425/aep.2023.144734
  • 25. Masten, L.W., Boeri, R.L. & Walker, J.D. (1994). Strategies employed to deteremine the acute aquatic toxicity of ethyl benzene, a highly volatile, poorly water-soluble chemical. Ecotoxicology and Environmental Safety, 27, 3, pp. 335-348. DOI:10.1006/eesa.1994.1027
  • 26. Oleszczuk, P., Malara, A., Jośko, I. & Lesiuk, A. (2012). The phytotoxicity changes of sewage sludge-amended soils. Water, Air, & Soil Pollution, 223, pp. 4937-4948. DOI:10.1007/s11270-012-1248-8
  • 27. Ostracodtoxkit F. (2001). Chronic Direct Contact Sediment Toxicity Test. Standard operation procedure (pp. 1-36). Nazareth: MicroBioTests Inc.
  • 28. Paradelo, R., Virto, I. & Chenu, C. (2015). Net effect of liming on soil organic carbon stocks: a review. Agriculture, Ecosystems & Environment, 202, pp. 98-107. DOI:10.1016/j.agee.2015.01.005
  • 29. Phytotoxkit. (2004). Seed germination and early growth microbiotest with higher plants. Standard operation procedure (pp. 1-24). Nazareth: MicroBioTests Inc.
  • 30. Pusz, A., Wiśniewska, M., Kamiński, A., Knosala, P. & Rogalski, D. (2024). Influence of carbons on metal stabilization and the reduction in soil phytotoxicity with the assessment of health risks. Resources, 13, 5, 66. DOI:10.3390/resources13050066
  • 31. Rodrigo-Ilarri, J., Rodrigo-Clavero, M.E., Capilla, J. E. & Romero-Ballesteros, L. (2023). Environmental Assessment of Soil and Groundwater Pollution by BTEX Leaching in Valencia Region (Spain). Water, 15, 18, 3279. DOI:10.3390/w15183279
  • 32. Serrano, A., Gallego, M. & González, J.L. (2006). Assessment of natural attenuation of volatile aromatic hydrocarbons in agricultural soil contaminated with diesel fuel. Environmental Pollution, 144, pp. 203-209. DOI:10.1016/j.envpol.2005.12.031
  • 33. Szopka, K., Gruss, I., Gruszka, D., Karczewska, A., Gediga, K. Gałka, B. & Dradrach, A. (2021). The Effects of forest litter and waterlogging on the ecotoxicity of soils strongly enriched in arsenic in a historical mining site. Forests, 12, 355. DOI:10.3390/f12030355
  • 34. Thamnotoxkit F. (1991). Crustacean toxicity screening test for freshwater. Standard operation procedure (pp. 1-23). Nazareth: MicroBioTests Inc.
  • 35. Tamrakar, A., Pervez, S., Verma, M., Majumdar, D., Pervez, Y.F., Candeias, C., Dugga, P., Mishra, A., Verma, S.R., Deb, M.K., Shrivas, K., Satnami M.L. & Karbhal, I. (2022). BTEX in Ambient Air of India: a Scoping Review of their Concentrations, Sources, and impact. Water, Air, & Soil Pollution, 233, 411. DOI:10.1007/s11270-022-05863-8
  • 36. Tang, J., Wang, M., Wang, F., Sun, Q. & Zhou, Q. (2011). Eco-toxicity of petroleum hydrocarbon contaminated soil. Journal of Environmental Sciences, 23, 5, pp. 845-851. DOI:10.1016/S1001-0742(10)60517-7
  • 37. Weelink, S.A.B., van Eekert, M.H.A. & Stams, A.J.M. (2010). Degradation of BTEX by anaerobic bacteria: physiology and application. Reviews in Environmental Science and Biotechnology, 9, pp. 359-385. DOI:10.1007/s11157-010-9219-2
  • 38. Wieczorek, J. & Baran, A. (2022). Pollution indices and biotests as useful tools for the evaluation of the degree of soil contamination by trace elements. Journal of Soils and Sediments, 22, 2, pp. 559-576. DOI:10.1007/s11368-021-03091-x
  • 39. Wu, Bo., Guo, S. & Wang, J. (2021). Spatial ecological risk assessment for contaminated soil in oiled fields. Journal of Hazardous Materials, 403, 123984. DOI:10.1016/j.jhazmat.2020.123984
  • 40. Yu, B., Yuan, Z., Yu, Z. & Xue-song, F. (2022). BTEX in the environment: An update on sources, fate, distribution, pretreatment, analysis, and removal techniques. Chemical Engineering Journal, 435, 134825. DOI:10.1016/j.cej.2022.134825
  • 41. Zheng, S. & Zhou, Q. (2017). Intoxication and biochemical responses of freshwater snail Bellamya aeruginosa to ethylbenzene. Environmental Science and Pollution Research, 24, pp. 189-198. DOI:10.1007/s11356-016-7716-8
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-86514f64-010f-4958-984a-29ca24468f92
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.