PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Numerical study of step forward swept angle effects on the hydrodynamic performance of a planing hull

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One of the most effective methods to diminish the drag of a planing craft is to use a step at the bottom of the hull. A stepped hull causes a reduction of the wetted area and, as a result, a decrease in the drag. The step may be designed as a straight line through the entire width of the hull or may be V-shaped with a forward or backward swept angle. In this paper, the effects of the step forward swept angle on the hydrodynamic performance of a hard chine planing vessel are investigated by finite volume method (FVM). Reynolds-Averaged Navier Stokes (RANS) equations with a standard k-ε turbulence model coupled with volume of fluid (VOF) equations are solved in order to simulate a transient turbulent free surface flow around the hull with the help of Ansys CFX software. In order to predict hull motions, equations of rigid body motions for two degrees of freedom (2-DOF) are coupled with fluid flow governing equations. To validate the presented numerical model, first the numerical results are compared with available experimental data, and then the obtained numerical results of the drag, dynamic trim, sinkage, wetted keel length, wetted chine length, pressure distribution on the hull, wetted surface and wake profile at different Froude numbers and step angles are presented and discussed.
Rocznik
Strony
35--42
Opis fizyczny
Bibliogr. 17 poz., rys., tab.
Twórcy
  • Amirkabir University of Technology, Department of Maritime Engineering Hafez Ave, No. 424, P.O. Box 15875-4413, Tehran, Iran
autor
  • Amirkabir University of Technology, Department of Maritime Engineering Hafez Ave, No. 424, P.O. Box 15875-4413, Tehran, Iran
autor
  • Amirkabir University of Technology, Department of Maritime Engineering Hafez Ave, No. 424, P.O. Box 15875-4413, Tehran, Iran
Bibliografia
  • 1. Akkerman, I., Dunaway, J., Kvandal, J., Spinks. J. & Bazilevs, Y. (2012) Toward free-surface modeling of planing vessels: simulation of the Fridsma hull using ALE-VMS. Computational Mechanics 50, 6, pp. 719–727.
  • 2. Bakhtiari, M., Veysi, S.T.G. & Ghassemi, H. (2016) Numerical modeling of the stepped planing hull in calm water. International Journal of Engineering; TRANSACTIONS B: Applications 29, 2, pp. 236–245.
  • 3. Brizzolara, S. & Serra, F. (2007) Accuracy of CFD codes in the prediction of planing surfaces hydrodynamic characteristics. 2nd International Conference on Marine Research and Transportation, Naples.
  • 4. Garland, W.R. & Maki, K.J.A. (2012) Numerical study of a two-dimensional stepped planing surface. Journal of Ship Production and Design 28, 2, pp. 60–72.
  • 5. Ghassabzadeh, M. & Ghassemi, H. (2014) Determining of the hydrodynamic forces on the multi-hull tunnel vessel in steady motion. Journal of the Brazilian Society of Mechanical Sciences and Engineering 36, 4, pp. 1–12.
  • 6. Ghassemi, H. & Ghiasi, M. (2008) A combined method for the hydrodynamic characteristics of planing craft. Ocean Engineering 35, pp. 310–322.
  • 7. Ghassemi, H. & Yumin, S. (2008) Determining the hydrodynamic forces on a planing hull in steady motion. Journal of Marine Science and Application 7(3), pp. 147–156.
  • 8. Kazerooni, M.F. & Seif, M.S. (2017) Experimental evaluation of forward speed effect on maneuvering hydrodynamic derivatives of a planing hull. Scientific Journals of the Maritime University of Szczecin, Zeszyty Naukowe Akademii Morskiej w Szczecinie 49, 121, pp. 40–53.
  • 9. Kohansal A.R., Ghassemi, H. & Ghiasi, M. (2010) Hydrodynamic characteristics of high speed planing hulls, including trim effect. Turkish Journal of Engineering and Environmental Sciences 34, pp. 1–16.
  • 10. Kohansal, A.R. & Ghassemi, H. (2010) A numerical modeling of hydrodynamic characteristics of various planing hull forms. Ocean Engineering 37, pp. 498–510.
  • 11. Savitsky, D. (1964) Hydrodynamic design of planing hulls. Marine Technology 1, 1, pp. 71–95.
  • 12. Savitsky, D., DeLorme, M.F. & Datla, R. (2007) Inclusion of whisker spray drag in performance prediction method for high-speed planing hulls. Marine Technology 44, pp. 35–56.
  • 13. Savitsky, D. & Morabito, M. (2010) Surface wave contours associated with the forebody wake of stepped planing hulls. Marine Technology 47, 1, pp. 1–16.
  • 14. Svahn, D. (2009) Performance prediction of hulls with transverse step. Master thesis, Marina System Center for Naval Architecture, KTH, Stockholm.
  • 15. Taunton, D., Hudson, D. & Shenoi, R. (2010) Characteristics of a series of high speed hard chine planing hulls. Part 1: performance in calm water. International Journal of Small Craft Technology 152, pp. 55–75.
  • 16. Veysi, S.T.G., Bakhtiari, M., Ghassemi, H. & Ghiasi, M. (2015) Toward numerical modeling of the stepped and non stepped planing hull. Journal of the Brazilian Society of Mechanical Sciences and Engineering 37, 6, pp. 1635–1645.
  • 17. Yumin, S., Qington, C., Hailong, S. & Wei, L. (2012) Numerical simulation of a planing vessel at high speed. Journal of Marine Science and Application 11, 2, pp. 178–183.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-86513020-9ce2-413e-b109-c3b58f8b6b1c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.