PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Experimental Study on the Heat Resistant Explosive 5,5’-Bis(2,4,6-trinitrophenyl)-2,2’-bi(1,3,4-oxadiazole) (TKX-55): the Jet Penetration Capability and Underwater Explosion Performance

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Ongoing research to find new explosives which are stable at high temperatures focuses on compounds which comply with the strict requirements which must be fulfilled in order for a compound to be of use in deep oil-well and gas drilling applications. Great efforts have been focused on the development of new, thermally stable explosives which are stable at even higher temperatures than hexanitrostilbene, and which also show superior performance. In the group of recently synthesized thermally stable explosives, 5,5’-bis(2,4,6-trinitrophenyl)-2,2’-bi(1,3,4-oxadiazole) (TKX-55) is one of the most promising prospective candidates for use in practical applications, due to its physicochemical properties as well as its convenient synthesis. Therefore, further investigation into the performance of TKX-55 in shaped charge applications was undertaken. This study was focused on the investigation of the jet penetration capability of conical shaped charges filled with TKX-55, in comparison with recently used other explosives. The kinetic energy of the jet depends on the brisance of the explosive which is used. In order to experimentally investigate the shattering effect of TKX-55, the Underwater Explosion Test was applied. Based on the collected data, the total energy, as the sum of the primary shock wave energy (the brisance) and the bubble gas energy (the heaving effect), was calculated.
Rocznik
Strony
821--837
Opis fizyczny
Bibliogr. 56 poz., rys., tab.
Twórcy
  • Energetic Materials Research, Department of Chemistry, University of Munich (LMU), Butenandtstraße 5-13, D-81377 Munich, Germany
  • Energetic Materials Research, Department of Chemistry, University of Munich (LMU), Butenandtstraße 5-13, D-81377 Munich, Germany
autor
  • Institute of Industrial Organic Chemistry, Annopol 6, 03-236 Warsaw, Poland
autor
  • Institute of Industrial Organic Chemistry, Annopol 6, 03-236 Warsaw, Poland
Bibliografia
  • [1] Urbański T., Chemistry and Technology of Explosives, Vol. 4, Pergamon Press, 1984; ISBN 0-08-026206-6.
  • [2] Sitzmann M.E., 2,5-Dipicryl-1,3,4-oxadiazole: a Shock-sensitive Explosive with High Thermal Stability (Thermally-stable Substitute for PETN), J. Energ. Mater., 1988, 6(1-2), 129-144.
  • [3] Agrawal J.P., Mehilal, Prasad U.S., Surve R.N., Synthesis of 1,3-Bis(1,2,4-triazol-3-amino)-2,4,6-trinitrobenzene and its Thermal and Explosive Behaviour, New J. Chem., 2000, 24(8), 583-585.
  • [4] Jadhav H.S., Talawar M.B., Sivabalan R., Dhavale D.D., Asthana S.N., Krishnamurthy V.N., Studies on 3,5-Dinitro-2,6-bis(picrylamino)pyridine (PYX) Based Thermally Stable Explosives: Synthesis, Thermolysis and Performance Evaluation, Indian J. Heterocycl. Chem., 2006, 15(4), 383-386.
  • [5] Gao H., Shreeve J.M., Azole-based Energetic Salts, Chemical Reviews, 2011, 111(11), 7377-7436.
  • [6] Agrawal J.P., Past, Present and Future of Thermally Stable Explosives, Cent. Eur. J. Energ. Mater., 2012, 9(3), 273-290.
  • [7] Agrawal J.P., High Energy Materials: Propellants, Explosives and Pyrotechnics, Wiley, Weinheim, 2015; ISBN 978-3-527-80268-5.
  • [8] Klapötke T.M., Chemistry of High-energy Materials, 3rd ed., De Gruyter, Berlin, 2015; ISBN 978-3-11-043932-8.
  • [9] Zygmunt B., Wilk Z., Formation of Jets by Shaped Charges with Metal Powder Liners, Propellants Explos. Pyrotech., 2008, 33(6), 482-487.
  • [10] Coleburn N.L., Drimmer B.E., The Explosive Properties of the Amino-substituted, Symmetrical Trinitrobenezenes, Defense Technical Information Center, United States Naval Ordnance Laboratory, White Oak, Silver Spring, Maryland, USA, 1963.
  • [11] Cady H.H., Larson A.C., The Crystal Structure of 1,3,5-Triamino-2,4,6-trinitrobenzene, Acta Crystallogr., 1965, 18(3), 485-496.
  • [12] Kaye S.M., Herman H.L., Encyclopedia of Explosives and Related Items, U.S. Army Armament Research and Development Command, Large Caliber Weapon Systems Laboratory, 1978.
  • [13] Jackson C.L., Wing J.F., On Tribromtrinitrobenzol, Am. Chem. J., 1888, 10, 283-294.
  • [14] Akst I., Heat of Detonation, the Cylinder Test, and Performance in Munitions, 9th Symposium (Int.) on Detonation, Portland, Oregon, USA, August 28 – September 1, 1989.
  • [15] Dobratz B.M., The Insensitive High Explosive Triaminotrinitrobenzene (TATB): Development and Characterization – 1888-1994, Report LA-13014-H, UC-741, 1995.
  • [16] Skinner D., Olson D., Block-Bolten A., Electrostatic Discharge Ignition of Energetic Materials, Propellants Explos. Pyrotech., 1998, 23(1), 34-42.
  • [17] Meyer R., Köhler J., Homburg A., Explosives, 6th ed., Wiley, Weinheim, 2007; ISBN 978-3-527-31656-4.
  • [18] Shipp K.G., Reactions of α-Substituted Polynitrotoluenes. I. Synthesis of 2,2’,4,4’,6,6’-Hexanitrostilbene, J. Org. Chem., 1964, 29(9), 2620-2623.
  • [19] Crutchmer J.A., HNS Critical Diameter Feasibility Study, MHSMP-78-53, 1978.
  • [20] Gerard F., Hardy A., Crystal Structure of HNS, 2,2’,4,4’,6,6’-Hexanitrostilbene, Acta Crystallogr., Sect. A: Found. Adv., 1987, 43(a1), C167.
  • [21] Gerard F., Hardy A., Structure de l’Hexanitro-2,2’,4,4’,6,6’-stilbene, HNS, et Comparaison avec le Trinitro-2,4,6-toluene, TNT, Acta Crystallogr., Sect. C: Struct. Chem., 1988, 44(7), 1283-1287.
  • [22] Hiskey M.A., Chavez D.E., Naud D.L., Insensitive High-nitrogen Compounds, LA-UR-01-1493, 2001.
  • [23] Lee J.-S., Hsu C.-K., Chang C.-L., A Study on the Thermal Decomposition Behaviors of PETN, RDX, HNS and HMX, Thermochim. Acta, 2002, 392-393, 173-176.
  • [24] Singh B., Malhotra R.K., Hexanitrostilbene and its Properties, Def. Sci. J., 2014, 33(2), 165-176.
  • [25] Coburn M.D., Singleton J.L., Picrylamino-substituted Heterocycles. V. Pyridines, J. Heterocycl. Chem., 1972, 9(5), 1039-1044.
  • [26] Coburn M.D., 2,6-Bis(picrylamino)-3,5-dinitropyridine and a Method for its Preparation, Patent US 3678061, 1972.
  • [27] Kuboszek R., Pawłowski W., A Method for Preparation of 2,6-Bis(picrylamino)-3,5-dinitropyridine, Patent PL 186580, 1997.
  • [28] Pawłowski W., Kuboszek R., Preparation of 2,6-Bis-(polynitrophenylamino) pyridines, Chemical Industry, 2002, 81(4), 237-240.
  • [29] Jadhay H.S., Talawar M.B., Sivabalan R., Dhavale D.D., Asthana S.N., Krishnamurthy V.N., Studies on 3,5-Dinitro-2,6-bispicrylamino Pyridine (PYX) Based Thermally Stable Explosives: Synthesis, Thermolysis and Performance Evaluation, Indian J. Heterocycl. Chem., 2006, 15(4), 383-386.
  • [30] Riggs R.S., 1,3,5-Trinitro-2,4,6-tripicrylbenzene, Patent US 4861924, 1989.
  • [31] Sitzmann M.E., Method for Making Nonanitroterphenyl, Patent US 6476280, 2002.
  • [32] Pagoria P.F., Zhang M.X., Synthesis of Pyrazines Including 2,6-Diaminopyrazine-1-oxide (DAPO) and 2,6-Diamino-3,5-dinitropyrazine-1-oxide (LLM-105), WO 2010123806, 2010.
  • [33] Klapötke T.M., Witkowski T.G., 5,5’-Bis(2,4,6-trinitrophenyl)-2,2’-bi(1,3,4-oxadiazole) (TKX-55): Thermally Stable Explosive with Outstanding Properties, ChemPlusChem, 2016, 81(4), 357-360.
  • [34] Sućeska M., EXPLO5, Version 6.01, Zagreb, Croatia, 2013.
  • [35] Explosives − Charges Directional for Jet Perforating, PN-C-86045:1997.
  • [36] Wilk Z., Zygmunt B., Skóra W., Kupidura Z., Kroczek M., Kuśnierz T., Liner for the Conical Shaped Charges, Patent PL 182314, 1996.
  • [37] Jach K., Świerczyński R., Wilk Z., Modelling of Perforation Process of Wellbore Pipes of Geological Wells Using Shaped Charges, J. Tech. Phys., 2004, 45(1), 31-54.
  • [38] Zygmunt B., Wilk Z., The Research of Shaped Charges with Powder Liners for Geological Borehole Perforation, Arch. Min. Sci., 2007, 52(1), 121-133.
  • [39] Wilk Z., Zygmunt B., Research of High Energy Explosives with Fluoropolymer Binders, New Trends Res. Energ. Mater., Proc. Semin., 4th, Pardubice, Czech Republic, 2001.
  • [40] Bjarnholt G., Holmberg R., Explosive Expansion Works in Underwater Detonations, 6th Symposium (Int.) on Detonation, Coronado, California, USA, August 24-27, 1976.
  • [41] Lefebvre M.H., Determination of the Power Output of Detonators, New Trends Res. Energ. Mater. Proc. Semin., 6th, Pardubice, Czech Republic, 2003.
  • [42] Explosives for Civil Uses − Detonators and Relays − Part 15: Determination of Equivalent Initiating Capability, EN 13763-15:2004.
  • [43] Paszula J., Maranda A., Szydłowska T., Determination of Initiating Capability of Detonators by Underwater Explosion Test, Cent. Eur. J. Energ. Mater., 2006, 3(1-2), 73-82.
  • [44] Koślik P., Staś J., Wilk Z., Zakrzewski A., Research of High Explosives Based on RDX, HMX and CL-20 in the Small Scale Underwater Test Examination, Cent. Eur. J. Energ. Mater., 2007, 4(3), 3-13.
  • [45] Cudziło S., Trzciński W.A., Paszula J., Nita M., Detonation and Decomposition Characteristics of Dichlorate(VII) μ-Tris(4-amino-1,2,4-triazole)copper(II), Cent. Eur. J. Energ. Mater., 2014, 11(4), 539-552.
  • [46] Klapötke T.M., Witkowski T.G., Wilk Z., Hadzik J., Determination of the Initiating Capability of Detonators Containing TKX-50, MAD-X1, PETNC, DAAF, RDX, HMX or PETN as a Base Charge, by Underwater Explosion Test, Propellants Explos. Pyrotech., 2016, 41(1), 92-97.
  • [47] Ochterski J.W., Petersson G.A., Montgomery J.A., A Complete Basis Set Model Chemistry. V. Extensions to Six or More Heavy Atoms, J. Chem. Phys., 1996, 104(7), 2598-2619.
  • [48] Montgomery J.A., Frisch M.J., Ochterski J.W., Petersson G.A., A Complete Basis Set Model Chemistry. VII. Use of the Minimum Population Localization Method, J. Chem. Phys., 2000, 112(15), 6532-6542.
  • [49] Gaussian 09, Revision A.02, Frisch M.J., Trucks G.W., Schlegel H.B., Scuseria G.E., Robb M.A., Cheeseman J.R., Scalmani G., Barone V., Mennucci B., Petersson G.A., Nakatsuji H., Caricato M., Li X., Hratchian H.P., Izmaylov A.F., Bloino J., Zheng G., Sonnenberg J.L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J.A., Peralta Jr., J.E., Ogliaro F., Bearpark M., Heyd J.J., Brothers E., Kudin K.N., Staroverov V.N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J.C., Iyengar S.S., Tomasi J., Cossi M., Rega N., Millam J.M., Klene M., Knox J.E., Cross J.B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R.E., Yazyev O., Austin A.J., Cammi R., Pomelli C., Ochterski J.W., Martin R.L., Morokuma K., Zakrzewski V.G., Voth G.A., Salvador P., Dannenberg J.J., Dapprich S., Daniels A.D., Farkas Ö., Foresman J.B., Ortiz J.V., Cioslowski J., Fox D.J., Gaussian, Inc., Wallingford CT, 2009.
  • [50] Curtiss L.A., Raghavachari K., Redfern P.C., Pople J.A., Assessment of Gaussian-2 and Density Functional Theories for the Computation of Enthalpies of Formation, J. Chem. Phys., 1997, 106(3), 1063-1079.
  • [51] Rice B.M., Pai S.V., Hare J., Predicting Heats of Formation of Energetic Materials Using Quantum Mechanical Calculations, Combust. Flame, 1999, 118(3), 445-458.
  • [52] Byrd E.F.C., Rice B.M., Improved Prediction of Heats of Formation of Energetic Materials Using Quantum Mechanical Calculations, J. Phys. Chem. A, 2006, 110(3), 1005-1013.
  • [53] Linstrom P.J., Mallard W.G., NIST Standard Reference Database Number 69, National Institute of Standards and Technology, Gaithersburg, 2016.
  • [54] Trouton F., IV. On Molecular Latent Heat, Philos. Mag. (1876-1900), 1884, 18(110), 54-57.
  • [55] Westwell M.S., Searle M.S., Wales D.J., Williams D. H., Empirical Correlations between Thermodynamic Properties and Intermolecular Forces, J. Am. Chem. Soc., 1995, 117(18), 5013-5015.
  • [56] CHEETAH 2.0, Energetic Materials Center, Lawrence Livermore National Laboratory, USA, 1998.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-863ed3e2-ac49-487a-b6ed-106b7c0502a3
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.