PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Dissolved Organic Carbon and Biodegradable Dissolved Organic Carbon determination in river water of the Strug basin

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The aim of the study was to determine Dissolved Organic Carbon (DOC) and Biodegradable Dissolved Organic Carbon (BDOC) concentrations, as well as the correlation between them, in the river water of the Strug basin located in the Carpathian Foothills. The Strug river's hydrographic basin was chosen for the study as it is a typical catchment area, which allows ease of measurement. DOC concentrations in the streams (tributaries) and the Strug ranged from 2.71 to 4.88 mgC/dm3 and from 3.62 to 4.19 mgC/dm3 , respectively. BDOC concentrations in the streams and the Strug ranged from 0.40 to 1.09 mgC/dm3 and from 0.64 to 0.77 mgC/dm3 , respectively. BDOC, expressed as the percentage of DOC (%BDOC) ranged from 14.76 to 24.78% in the streams, and from 17.68 to 20.11% in the Strug. The procentage of BDOC is independent of DOC concentrations. The season of the year and the size of the watercourse had the greatest impact on DOC and BDOC concentrations.
Twórcy
autor
  • Department of Civil, Environmental Engineering and Architecture, University of Technology, Powstancow Warszawy 6, 35-959, Rzeszow, Poland
  • Department of Civil, Environmental Engineering and Architecture, University of Technology, Powstanców Warszawy 6, 35-959, Rzeszow, Poland Rzeszow
  • Engineering Department, Gillow Avenue, Lancaster University, Bailrigg, LA1 4YW, United Kingdom
Bibliografia
  • [1] Sillanpää M. Natural Organic Matter in Water: Characterization and Treatment Methods. Butterworth-Heinemann; 2014.
  • [2] Świetlik J., Dąbrowska A., Raczyk-Stanisławiak U., Nawrocki J. Reactivity of natural organic matter fractions with chlorine dioxide and ozone. Water Res 2004;38:547-58. doi:10.1016/j.watres.2003.10.034.
  • [3] Villanueva CM., Cordier S., Font-Ribera L., Salas LA., Levallois P. Overview of Disinfection By-products and Associated Health Effects. Curr Environ Health Rep 2015;2:107-15. doi:10.1007/s40572-014-0032-x.
  • [4] Egli T. How to live at very low substrate concentration. Water Res 2010;44:4826-37. doi:10.1016/j.watres.2010.07.023.
  • [5] Wolska M. Biological stability of water in water distribution systems. The effect of water treatment trials. Environ Prot Eng 2015;41.
  • [6] Papciak D., Tchórzewska-Cieslak B., Pietrucha-Urbanik K., Pietrzyk A. Analysis of the biological stability of tap water on the basis of risk analysis and parameters limiting the secondary growth of microorganisms in water distribution systems. Desalination Water Treat 2018;117:1-8. doi:10.5004/dwt.2018.22106.
  • [7] Wilkinson GM., Pace ML., Cole JJ. Terrestrial dominance of organic matter in north temperate lakes. Glob Biogeochem Cycles 2013;27:43-51. doi:10.1029/2012GB004453.
  • [8] Thurman EM. Organic Geochemistry of Natural Waters. Springer; 1985.
  • [9] Nelson P., Cotsaris E., Oades J., Bursill D. Influence of soil clay content on dissolved organic matter in stream waters. Mar Freshw Res 1990;41:761-74.
  • [10] Nelson PN., Baldock JA., Oades JM. Concentration and composition of dissolved organic carbon in streams in relation to catchment soil properties. Biogeochemistry 1992;19:27-50. doi:10.1007/BF00000573.
  • [11] Willey JD., Kieber RJ., Eyman MS., Avery GB. Rainwater dissolved organic carbon: Concentrations and global flux. Glob Biogeochem Cycles 2000;14:139-148. doi:10.1029/1999GB900036.
  • [12] Zdeb M., Papciak D., Zamorska J. An assessment of the quality and use of rainwater as the basis for sustainable water management in suburban areas. E3S Web Conf 2018;45:00111. doi:10.1051/e3sconf/20184500111.
  • [13] Evans CD., Monteith DT., Cooper DM. Long-term increases in surface water dissolved organic carbon: Observations, possible causes and environmental impacts. Environ Pollut 2005;137:55-71. doi:10.1016/j.envpol.2004.12.031.
  • [14] Sarkkola S., Koivusalo H., Laurén A., Kortelainen P., Mattsson T., Palviainen M., et al. Trends in hydrometeorological conditions and stream water organic carbon in boreal forested catchments. Sci Total Environ 2009;408:92-101. doi:10.1016/j.scitotenv.2009.09.008.
  • [15] Hejzlar J., Dubrovský M., Buchtele J., Růžička M. The apparent and potential effects of climate change on the inferred concentration of dissolved organic matter in a temperate stream (the Malše River., South Bohemia). Sci Total Environ 2003;310:143-52. doi:10.1016/S0048-9697(02)00634-4.
  • [16] Rozporządzenie Ministra Środowiska z dnia 22 lipca 2009 r. w sprawie klasyfikacji stanu ekologicznego, potencjału ekologicznego i stanu chemicznego jednolitych części wód powierzchniowych Dz.U. z 2009 r. nr 122, poz. 1018.
  • [17] Servais P., Anzil A., Ventresque C. Simple method for determination of biodegradable dissolved organic carbon in water. Appl Environ Microbiol 1989;55:2732-2734.
  • [18] McLaughlin C., Kaplan L.A. Biological lability of dissolved organic carbon in stream water and contributing terrestrial sources. Freshw Sci 2013;32:1219-30. doi:10.1899/12-202.1.
  • [19] Fellman J.B., Hood E., D’Amore D.V., Edwards R.T., White D. Seasonal changes in the chemical quality and biodegradability of dissolved organic matter exported from soils to streams in coastal temperate rainforest watersheds. Biogeochemistry 2009;95:277-93. doi:10.1007/s10533-009-9336-6.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-863e3a80-ad9d-4f5d-9190-46f71e2e464c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.