PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Spectral and Temporal Analysis of Ultraluminous X-ray Sources in NGC 2276

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
We present the results of spectral and temporal analysis of Ultraluminous X-ray sources (ULXs) present in the relatively nearby spiral galaxy NGC 2276 which has been observed five times by the Chandra ACIS-S over a time period of 16 yr. We detect seven X-ray point sources from the recent Chandra observations of 2019-2020 and compare the results with earlier observations from 2004 and 2013. The spectra of these sources are fitted using two empirical models- an absorbed power law and an absorbed disk blackbody. The X-ray luminosity of all these sources are estimated to be Lx≥ 1039 erg/s, thus falling under the ULX category, with five sources having Lx≈1040 erg/s. The power law photon index (Γ) and the inner disk temperature (kTin) of these sources (except for one - Src6) are found to be in the hard states implying the radiative mechanism of these sources to be the inverse comptonization of soft photons and the emission is dominated by the inner regions of the accretion disk. Comparing the long term luminosity of these sources, we observe variations in two sources while three sources have gradually increasing luminosity and two other sources have almost consistent luminosity. Short term variability is absent in these sources. Assuming the emission to be isotropic, we estimate the BH mass from the disk blackbody model. The upper limit of the BH mass of these seven sources are found to be in the stellar mass BHs range with MBH<70 M, accreting at higher rates than their respective Eddington limit.
Czasopismo
Rocznik
Strony
261--279
Opis fizyczny
Bibliogr. 50 poz., il., tab., wykr.
Twórcy
  • Department of Physics, Assam University, Silchar, India
autor
  • Department of Physics, Manipur University, Imphal, India
Bibliografia
  • Anastasopoulou, K., Zezas, A., Gkiokas, V., and Kovlakas, K. 2019, MNRAS, 483, 711.
  • Avdan, H., Avdan, S., Akyuz, A., et al. 2016, ApJ, 828, 105.
  • Bachetti, M., Harrison, F.A., Walton, D.J., et al. 2014, Nature, 514, 202.
  • Barbon, R., Cappellaro, E., and Turatto, M. 1989, A&AS, 81, 421.
  • Carpano, S., Haberl, F., Maitra, C., and Vasilopoulos, G. 2018, MNRAS, 476, L45.
  • Condon, J.J. 1983, ApJS, 53, 459.
  • Davis, D.S., Keel, W.C., Mulchaey, J.S., and Henning, P.A. 1997, AJ, 114, 613.
  • Davis, D.S., and Mushotzky, R.F. 2004, ApJ, 604, 653.
  • Devi, A.S., Misra, R., Agarwal, V.K., et al. 2007, ApJ, 664, 458.
  • Devi, A.S, Misra, R., Shanthi, K., et al. 2008, ApJ, 682, 218.
  • Doroshenko, V., Tsygankov, S., Long, J., et al. 2020, A&A, 634, A89.
  • Earnshaw, H.P., Roberts, T.P., Middleton, M.J. et al. 2019, MNRAS, 483, 5554.
  • Ebisuzaki, T., Makino, J., Tsuru, T.G., et al. 2001, ApJ, 562, L19.
  • Elmegreen, D.M., Sundin, M., Sundelius, B., and Elmegreen, B. 1991, A&A, 244, 52.
  • Fabbiano, G. 1989, Ann. Rev. Astron. Astrophys., 27, 87.
  • Farrell, S.A., Webb, N.A., Barret, D., Godet, O., and Rodrigues, J.M. 2009, Nature, 460, 73.
  • Feng, H., and Kaaret, P. 2008, ApJ, 675, 1067.
  • Freeland, M., Kuncic, Z., Soria, R., and Bicknell, G.V. 2006, MNRAS, 372, 630.
  • Fürst, F., Walton, D.J., Harrison, F.A., et al. 2016, ApJ, 832, L14.
  • Godet, O., Plazolles, B., Kawaguchi, T., et al. 2012, ApJ, 752, 34.
  • Godet, O, Lombardi, J.C, Antonini, F, et al. 2014, ApJ, 793, 105.
  • Gruendl, R.A., Vogel, S.N., Davis, D.S., and Mulchaey, J.S. 1993, ApJ, 413, L81.
  • Heida, M., Torres, M.A.P., Jonker, P.G., et al. 2015, MNRAS, 453, 3510.
  • Hodge, P.W., and Kennicutt Jr, R.C. 1983, AJ, 88, 296.
  • Iskudaryan, S.G., and Shakhbazyan, R.K. 1967, Astrophysics, 3, 67.
  • Israel, G.L., Belfiore, A., Stella, L., et al. 2017, Science, 355, 817.
  • Kaaret, P., Prestwich, A.H., Zezas, A., et al. 2001, MNRAS, 321, L29.
  • Kennicutt, R.C. 1983, ApJ, 272, 54.
  • King, A.R., Davies, M.B., Ward, M.J., et al. 2001, ApJ, 552, L109.
  • Lasota, J.P., King, A.R., and Dubus G. 2015, ApJ, 801, L4.
  • Lin, D., Strader, J., Romanowsky, A.J., et al. 2020, ApJ, 892, L25.
  • Liu, J. 2011, ApJS, 192, 10.
  • Miller, M.C., and Colbert, E.J.M. 2004, International Journal of Modern Physics D, 13, 1.
  • Miller, M.C., Farrell, S.A., and Maccarone, T.J. 2014, ApJ, 788, 116.
  • Motch, C., Pakull, M.W., Soria, R., et al. 2014, Nature, 514, 198.
  • Mukherjee, E.S., Walton, D.J., Bachetti, M., et al. 2015, ApJ, 808, 64.
  • Paczy´nsky, B., and Wiita, P.J. 1980, A&A, 88, 23.
  • Pasham, D.R., Strohmayer, T.E., and Mushotzky, R.F. 2014, Nature, 513, 74.
  • Poutanen, J., Lipunova, G., Fabrika, S., Butkevich, A.G., and Abolmasov P. 2007, MNRAS, 377, 1187.
  • Roberts, T.P., Goad, M.R., Ward, M.J., and Warwick, R.S. 2003, MNRAS, 342, 709.
  • Rodriguez Castillo, G.R., Israel, G.L., Belfiore, A., et al. 2020, ApJ, 895, 60.
  • Sathyaprakash, R., Roberts, T.P., Walton, D.J., et al. 2019, MNRAS, 488, L35.
  • Singha, A.C., and Devi, A.S. 2017, Astroph., and Space Sci., 362, 223.
  • Singha, A.C., and Devi, A.S. 2019, Acta Astron., 69, 339.
  • Soria, R., Cropper, M., Pakull, M., Mushotzky, R., and Wu K. 2005, MNRAS, 356, 12.
  • Soria, R., Risaliti, G., Elvis, M., et al. 2009, ApJ, 695, 1614.
  • Sutton, A.D., Roberts, T.P., Walton, D.J., Gladstone, J.C., and Scott, A.E. 2012, MNRAS, 423, 1154.
  • Winter L.M., Mushotzky R.F., and Reynolds C.S. 2006, ApJ, 649, 730.
  • Wolter, A., Pizzolato, F., Rota S., Mapelli, M., and Ripamonti, E. 2011, Astron. Nachr., 332, 358.
  • Wolter, A., Esposito, P., Mapelli, M., et al. 2015, MNRAS, 448, 781.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-863c80c0-e379-486f-b58e-f0fd6b5d6747
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.