PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Research on GNSS positioning and applications in Poland in 2015–2018

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This review paper presents research results on geodetic positioning and applications carried out in Poland, and related to the activities of the International Association of Geodesy (IAG) Commission 4 “Positioning and Applications” and its working groups. It also constitutes the chapter 4 of the national report of Poland for the International Union of Geodesy and Geodynamics (IUGG) covering the period of 2015-2018. The paper presents selected research, reviewed and summarized here, that were carried out at leading Polish research institutions, and is concerned with the precise multi-GNSS (Global Navigation Satellite Systems) satellite positioning and also GNSS-based ionosphere and troposphere modelling and studies. The research, primarily carried out within working groups of the IAG Commission 4, resulted in important advancements that were published in leading scientific journals. During the review period, Polish research groups carried out studies on multi-GNSS functional positioning models for both relative and absolute solutions, stochastic positioning models, new carrier phase integer ambiguity resolution methods, inter system bias calibration, high-rate GNSS applications, monitoring terrestrial reference frames with GNSS, assessment of the real-time precise satellite orbits and clocks, advances in troposphere and ionosphere GNSS remote sensing methods and models, and also their applications to weather, space weather and climate studies.
Rocznik
Strony
87--119
Opis fizyczny
Bibliogr. 83 poz., rys., tab., wykr.
Twórcy
  • University of Warmia and Mazury in Olsztyn 2 Michała Oczapowskiego, 10-719 Olsztyn, Poland
  • Wroclaw University of Environmental and Life Sciences Institute of Geodesy and Geoinformatics 53 Grunwaldzka, 50-357 Wroclaw, Poland
autor
  • Military University of Technology Faculty of Civil Engineering and Geodesy 2 Witolda Urbanowicza, 00-908 Warsaw, Poland
  • University of Warmia and Mazury in Olsztyn 2 Michała Oczapowskiego, 10-719 Olsztyn, Poland
Bibliografia
  • [1] Araszkiewicz, A., Nykiel, G. and Bałdysz, Z. (2015). Impact of higher order ionospheric corrections on the rate of baseline length changes in GPS differential positioning. In 15th International Multidisciplinary Scientific GeoConferences SGEM 2015, Bulgaria. DOI: 10.5593/SGEM2015/B22/S9.038.
  • [2] Baldysz, Z., Nykiel, G., Araszkiewicz, A., Figurski, M. and Szafranek, K. (2016). Comparison of GPS tropospheric delays derived from two consecutive EPN reprocessing campaigns from the point of view of climate monitoring. Atmos. Meas. Tech., 9, 4861–4877. DOI: 10.5194/amt-9-4861-2016.
  • [3] Baldysz, Z., Nykiel, G., Figurski, M. and Araszkiewicz, A. (2018). Assessment of the Impact of GNSS Processing Strategies on the Long-Term Parameters of 20 Years IWV Time Series. Remote Sens., 10(4), 496. DOI: 10.3390/rs10040496.
  • [4] Baldysz, Z., Nykiel, G., Figurski, M., Szafranek, K. and Kroszczynski, K. (2015). Investigation of the 16-year and 18-year ZTD Time Series Derived from GPS Data Processing. Acta Geophys., 63(4), 1103–1125. DOI: 10.1515/acgeo-2015-0033.
  • [5] Banville, S., Sieradzki, R., Hoque, M., Wezka, K. and Hadas, T. (2017). On the estimation of higherorder ionospheric effects in precise point positioning. GPS Solut., 21(4), 1817–1828. DOI: 10.1007/s10291-017-0655-0.
  • [6] Borio, D., Gioia, C. and Mitchison, N. (2016). Identifying a low-frequency oscillation in Galileo IOV pseudorange rates. GPS Solut., 20(3), 363–372. DOI: 10.1007/s10291-015-0443-7.
  • [7] Cai, C. and Gao, Y. (2013). Modeling and assessment of combined GPS/GLONASS precise point positioning. GPS Solut., 17(2), 223–236. DOI: 10.1007/s10291-012-0273-9.
  • [8] Cellmer, S., Nowel, K. and Kwa´sniak, D. (2017). Optimization of a grid of candidates in the serach procedure of the MAFA method. In Environmental Engineering 10th International Conference, 2017 Vilnius, Lithuania. DOI: 10.3846/enviro.2017.179.
  • [9] Cellmer, S., Nowel, K. and Kwasniak, D. (2018). The New Search Method in Precise GNSS Positioning. IEEE Trans. Aerosp. Electron. Syst., 54(1), 404–415. DOI: 10.1109/TAES.2017.2670578.
  • [10] Cherniak, I., Krankowski, A. and Zakharenkova, I. (2018). ROTI Maps: a new IGS ionospheric product characterizing the ionospheric irregularities occeurrence. GPS Solut., 22:69. DOI: 10.1007/s10291-018-0730-1.
  • [11] Counselman, S. and Gourevitch, S. (1981). Miniature interferometer terminals for earth surveying: ambiguity and multipath with the global positioning system. IEEE Trans. Geosci. Remote Sens., 19, 244–252.
  • [12] Dabrowski, B.P., Krankowski, A., Błaszkiewicz, L. and Rothkaehl, H. (2016). Prospects for Solar and SpaceWeather Research with Polish Part of the LOFAR Telescope. Acta Geophys., 64(3), 825–840. DOI: 10.1515/acgeo-2016-0028.
  • [13] Dawidowicz, K. (2018). Differences in GPS coordinate time series caused by changing type-mean to individual antenna phase center calibration model. Stud. Geophys. Geod., 62, 38–56. DOI: 10.1007/s11200-016-0630-1.
  • [14] Dawidowicz, K. and Krzan, G. (2016). Analysis of PCC model dependent periodic signals in GLONASS position time series using Lomb-Scargle periodogram. Acta Geodyn. Geomater., 13(3), 299–314. DOI: 10.13168/AGG.2016.0012.
  • [15] Dawidowicz, K. and Krzan, G. (2017). Periodic signals in a pseudo-kinematic GPS coordinate time series depending on the antenna phase center model – TRM55971.00 TZGD antenna case study. Surv. Rev., 49(355), 268–276. DOI: 10.1080/00396265.2016.1166688.
  • [16] Douša, J., Dick, G., Kaˇcmaˇrík, M., Brožková, R., Zus, F., Brenot, H., Stoycheva, A., Möller, G. and Kaplon, J. (2017). Benchmark campaign and case study episode in central Europe for development and assessment of advanced GNSS tropospheric models and products. Atmos. Meas. Tech., 9, 2989–3008. DOI: 10.5194/amt-9-2989-2016.
  • [17] Drewes, H., Kuglitsch, F., Adám, J. et al. (2016). The Geodesist’s Handbook 2016. J. Geod., 90(10), 907–1205. DOI: 10.1007/s00190-016-0948-z.
  • [18] Dymarska, N., Rohm, W., Sierny, J., Kapłon, J., Kubik, T., Kryza, M., Jutarski, J., Gierczak, J. and Kosierb, R. (2017). An assessment of the quality of near-real time GNSS observations as a potential data source for meteorology. Meteorology Hydrology and Water Management, 5(1), 3–13. DOI: 10.26491/mhwm/65146.
  • [19] Figurski, M. and Nykiel, G. (2017). Investigation of the impact of ITRF2014/IGS14 on the positions of the reference stations in Europe. Acta Geodyn. Geomater., 14(4), 401–410. DOI: 10.13168/AGG.2017.0021.
  • [20] Golaszewski, P., St˛epniak, K. and Wielgosz, P. (2017a). Zenith Tropospheric Delay Estimates Using Absolute and Relative Approaches to GNSS Data Processing – Preliminary Results. In 2017 Baltic Geodetic Congress (BGC Geomatics), Gdansk 2017, 414–418. DOI: 10.1109/BGC. Geomatics.2017.79.
  • [21] Gołaszewski, P., Wielgosz, P. and St˛epniak, K. (2017b). Intercomparison and validation of GNSS-IWV derived with G-Nut and Bernese software. In Environmental Engineering 10th International Conference, 2017 Vilnius, Lithuania. DOI: 10.3846/enviro.2017.193.
  • [22] Hadas, T. and Bosy, J. (2015). IGS RTS precise orbits and clocks verification and quality degradation over time. GPS Solut., 19 (1), 93–105. DOI: 10.1007/s10291-014-0369-5.
  • [23] Hadas, T., Krypiak-Gregorczyk, A., Hernández-Pajares, M., Kapłon, J., Paziewski, J., Wielgosz, P., Garcia-Rigo, A., Kazmierski, K., Sosnica, K., Kwasniak, D., Sierny, J., Bosy, J., Pucilowski M., Szyszko, R., Portasiak, K,. Olivares-Pulido, G., Gulyaeva, T. and Orus-Perez, R. (2017a). Impast and implementation of higher-order ionospheric effects on precise GNSS applications. J. Geophys. Res.: Solid Earth, 122, 9420–6436. DOI: 10.1002/2017JB014750.
  • [24] Hadas, T., Teferle, F.N., Kazmierski, K., Hordyniec, P. and Bosy J. (2017b). Optimum stochastic modeling for GNSS tropospheric delay estimation in real-time. GPS Solut., 21(3), 1069–1081. DOI: 10.1007/s10291-016-0595-0.
  • [25] Hernández-Pajares, M., Roma-Dollase, D., Krankowski, A., García-Rigo, A. and Orús-Pérez, R. (2017a). Methodology and consistency of slant and vertical assessments for ionospheric electron content models. J. Geod., 91, 1405–1414. DOI: 10.1007/s00190-017-1032-z.
  • [26] Hernández-Pajares, M., Wielgosz, P., Paziewski, J., Krypiak-Gregorczyk, A., Krukowska, M., Stepniak, K., Kaplon, J., Hadas, T., Sosnica, K., Bosy, J., Orus-Perez, R., Monte-Moreno, E., Yang, H., Garcia-Rigo, A. and Olivares-Pulido G. (2017b). Direct MSTID mitigation in precise GPS processing. Radio Sci., 52, 321–337. DOI: 10.1002/2016RS006159.
  • [27] Hordyniec, P. (2018). Simulation of liquid water and ice contributions to bending angle profiles in the radio occultation technique. Adv. Space Res., 62(5), 1075–1089. DOI: 10.1016/j.asr.2018.06.026.
  • [28] Hordyniec, P., Huang, C.-Y., Liu, C.-Y., Rohm, W. and Chen, S.-Y. (2018). GNSS radio occultation profiles in the neutral atmosphere from inversion of excess phase data. Terr. Atmos. Ocean. Sci. DOI: 10.3319/TAO.2018.10.12.01.
  • [29] Janicka, J. and Rapinski, J. (2016). Application of RSSI Based Navigation in indoor positioning. In 2016 Baltic Geodetic Congress (BGC Geomatics), Gdansk 2016. DOI: 10.1109/BGC.Geomatics. 2016.17.
  • [30] Kacmarík, M., Douša, J., Dick, G., Zus, F., Brenot, H., Möller, G., Pottiaux, E., Kapłon, J., Hordyniec, P., Václavovic, P. and Morel, L. (2017). Inter-technique validation of tropospheric slant total delays. Atmos. Meas. Tech., 10, 2183–2208. DOI: 10.5194/amt-10-2183-2017.
  • [31] Kalita, J.Z. and Rzepecka, Z. (2017). Impact of the initial tropospheric zenith path delay on precise point positioning convergence during active conditions. Meas. Sci. Technol., 28 045102. DOI: 10.1088/1361-6501/aa5742.
  • [32] Kazmierski, K., Hadas, T. and So´snica, K. (2018a).Weighting of Multi-GNSS Observations in Real-Time Precise Point Positioning. Remote Sens., 10 (1), 84. DOI: 10.3390/rs10010084.
  • [33] Kazmierski, K., Santos, M. and Bosy, J. (2017). Tropospheric delay modelling for the EGNOS augmentation system. Surv. Rev., 49 (357), 399–407. DOI: 10.1080/00396265.2016.1180798.
  • [34] Kazmierski, K., Sosnica, K. and Hadas, T. (2018b). Quality assessment of multi-GNSS orbits and clocks for real-time Precise Point Positioning. GPS Solut., 22:11. DOI: 10.1007/s10291-017-0678-6.
  • [35] Kotulak, K., Fron, A., Krankowski, A., Olivares Pulido, G. and Henrandez-Pajares, M. (2017). Sibsonian and non-Sibsonian natural neighbour interpolation of the total electron content value. Acta Geophys., 65, 13–28. DOI: 10.1007/s11600-017-0003-3.
  • [36] Kroszczynski, K. (2015). Angular Distributions of Discrete Mesoscale Mapping Functions. Acta Geophys., 63 (4), 1126–1149. DOI: 10.1515/acgeo-2015-0035.
  • [37] Krypiak-Gregorczyk, A. and Wielgosz P. (2018). Carrier phase bias estimation of geometry-free linear combination of GNSS signals for ionospheric TEC modeling. GPS Solut., 22:45. DOI: 10.1007/s10291-018-0711-4.
  • [38] Krypiak-Gregorczyk, A., Wielgosz, P. and Borkowski, A. (2017a). Ionosphere Model for European Region Based on Multi-GNSS Data and TPS Interpolation. Remote Sens., 9(12), 1221. DOI: 10.3390/rs9121221.
  • [39] Krypiak-Gregorczyk, A., Wielgosz, P. and Jarmołowski, W. (2017b). A new TEC interpolation method based on the least squares collocation for high accuracy regional ionospheric maps. Meas. Sci. Technol., 28(4), 045801. DOI: 10.1088/1361-6501/aa58ae.
  • [40] Krzan, G., Dawidowicz, K., Stepniak, K. and Swia˛tek, K. (2017). Determining normal heights with the use of Precise Point Positioning. Surv. Rev., 49(355), 259–267. DOI: 10.1080/00396265.2016.1164939.
  • [41] Kwasniak, D., Cellmer, S. and Nowel, K. (2016). Schreiber’s Differencing Scheme Applied to Carrier Phase Observations in the MAFA Method. In 2017 Baltic Geodetic Congress (BGC Geomatics), Gdansk 2017, 197–204. DOI: 10.1109/BGC.Geomatics.2016.43.
  • [42] Kwasniak, D., Cellmer, S. and Nowel, K. (2017a). Precise positioning in Europe using the Galileo and GPS combination. In Environmental Engineering 10th International Conference, 2017 Vilnius, Lithuania. DOI: 10.3846/enviro.2017.210.
  • [43] Kwasniak, D., Cellmer, S. and Nowel, K. (2017b). Single Frequency RTK Positioning Using Schreiber’s Differencing Scheme. In 2017 Baltic Geodetic Congress (BGC Geomatics), Gdansk 2017, 307–311. DOI: 10.1109/BGC.Geomatics.2017.59.
  • [44] Lasota, E., Rohm, W., Liu, C.-Y. and Hordyniec, P. (2018). Cloud detection from radio occultation measurements in tropical cyclones. Atmos., 9(11), 418. DOI: 10.3390/atmos9110418.
  • [45] Montenbruck, O., Steigenberger, P. and Hauschild, A. (2015). Broadcast versus precise ephemerides: A multi-GNSS perspective. GPS Solut., 19(2), 321–333. DOI: 10.1007/s10291-014-0390-8.
  • [46] Nowel, K, Cellmer, S. and Kwa´sniak, D. (2017). A Minimum Size of the Search Cube in the MAFAILS Method. In Environmental Engineering 10th International Conference, 2017 Vilnius, Lithuania. DOI: 10.3846/enviro.2017.222.
  • [47] Nowel, K., Cellmer, S. and Kwa´sniak, D. (2018). Mixed integer–real least squares estimation for precise GNSS positioning using a modified ambiguity function approach. GPS Solut., 22:31. DOI: 10.1007/s10291-017-0694-6.
  • [48] Nykiel, G, Zanimonskiy, Y.M., Yampolski, Y.M. and Figurski, M. (2017). Efficient Usage of Dense GNSS Networks in Central Europe for the Visualization and Investigation of Ionospheric TEC Variations. Sensors, 17(10), 2298. DOI: 10.3390/s17102298.
  • [49] Nykiel, G. and Figurski, M. (2017). Impact of Galileo Observations on the Position and Ambiguities Estimation of GNSS Reference Stations. In 2017 Baltic Geodetic Congress (BGC Geomatics), Gdańsk 2017, 225–231. DOI: 10.1109/BGC.Geomatics.2017.11.
  • [50] Nykiel, G., Wolak, P. and Figurski, M. (2018). Atmospheric opacity estimation based on IWV derived from GNSS observations for VLBI applications. GPS Solut., 22:9. DOI: 10.1007/s10291-017-0675-9.
  • [51] Paziewski, J. (2015). Precise GNSS single epoch positioning with multiple receiver configuration for medium-length baselines: methodology and performance analysis. Meas. Sci. Technol., 26(3), 035002. DOI: 10.1088/0957-0233/26/3/035002.
  • [52] Paziewski, J. (2016). Study on desirable ionospheric corrections accuracy for network-RTK positioning and its impact on time-to-fix and probability of successful single-epoch ambiguity resolution. Adv. Space Res., 57(4), 1098–1111. DOI: 10.1016/j.asr.2015.12.024.
  • [53] Paziewski, J. and Sieradzki, R. (2017). Integrated GPS+BDS instantaneous medium baseline RTK positioning: signal analysis, methodology and performance assessment. Adv. Space Res., 60(12), 2561–2573. DOI: 10.1016/j.asr.2017.04.016.
  • [54] Paziewski, J. and Sieradzki, R. (2018). Mitigation of the Ionospheric Disturbances in GNSS Relative Positioning: A Case Study in Southern High Latitudes. In 2018 Baltic Geodetic Congress (BGC Geomatics), Olsztyn 2018. DOI: 10.1109/BGC-Geomatics.2018.00058.
  • [55] Paziewski, J. and Wielgosz, P. (2015). Accounting for Galileo-GPS inter-system biases in precise satellite positioning. J. Geod., 89(1), 81–93. DOI: 10.1007/s00190-014-0763-3.
  • [56] Paziewski, J. and Wielgosz, P. (2017). Investigation of some selected strategies for multi-GNSS instantaneous RTK positioning. Adv. Space Res., 59(1), 12–23. DOI: 10.1016/j.asr.2016.08.034.
  • [57] Paziewski, J., Sieradzki, R. and Baryła, R. (2018). Multi-GNSS high-rate RTK, PPP and novel direct phase observation processing method: application to precise dynamic displacements detection. Meas. Sci. Technol., 29(3). DOI: 10.1088/1361-6501/aa9ec2.
  • [58] Paziewski, J., Sieradzki, R. and Wielgosz, P. (2015). Selected properties of GPS and Galileo-IOV receiver intersystem biases in multi-GNSS data processing. Meas. Sci. Technol., 26(9), 095008. DOI: 10.1088/0957-0233/26/9/095008.
  • [59] Paziewski, J., Sieradzki, R. and Wielgosz, P. (2018). On the Applicability of Galileo FOC Satellites with Incorrect Highly Eccentric Orbits: An Evaluation of Instantaneous Medium-Range Positioning. Remote Sens., 10(2), 208. DOI: 10.3390/rs10020208.
  • [60] Próchniewicz, D., Szpunar, R. and Brzezi´nski, A. (2016). Network-Based Stochastic Model for instantaneous GNSS real-time kinematic positioning. J. Surv. Eng., 142(4), 05016004. DOI: 10.1061/(ASCE)SU.1943-5428.0000188.
  • [61] Próchniewicz, D., Szpunar, R. and Walo, J. (2017). A new study of describing the reliability of GNSS Network RTK positioning with the use of quality indicators. Meas. Sci. Technol., 28(1), 015012. DOI: 10.1088/1361-6501/28/1/015012.
  • [62] Rapinski, J. (2015). The application of Zigbee phase shift measurement in ranging. Acta Geodyn. Geomater., 12(2), 145–149. DOI: 10.13168/AGG.2015.0014.
  • [63] Rapinski, J. and Cellmer, S. (2015). Analysis of range based indoor positioning techniques for personal communication networks. Mobile Netw. Appl., 21(3), 539–549. DOI: 10.1007/s11036-015-0646-8.
  • [64] Rapinski, J. and Janicka J. (2015). Filtering the results of Zigbee distance measurements with RANSAC algorithm. Acta Geodyn. Geomater., 13(1), 83–88. DOI: 10.13168/AGG.2015.0043.
  • [65] Rapinski, J. and Janicka, J. (2017). An example and analysis for ambiguity resolution in the indor ZigBee positioning system. Reports on Geodesy and Geoinformatics, 103(1), 1–9. DOI: 10.1515/rgg-2017-0001.
  • [66] Rapinski, J. and Smieja, M. (2015). ZigBee ranging using phase shift measurements. J. Navigation, 68(4), 665–677. DOI: 10.1017/S0373463315000028.
  • [67] Roma-Dollase, D., Hernández-Pajares, M., Krankowski, A., Kotulak, K., Ghoddousi-Fard, R., Yuan, Y., Li, Z., Shi, C., Wang, C., Feltens, J., Vergados, P., Komjathy, A., Schaer, S., García-Rigo, A. and Gómez-Cama, J. (2018). Consistency of seven different GNSS global ionospheric mapping techniques during one solar cycle. J. Geod., 92(6), 691–706. DOI: 10.1007/s00190-017-1088-9.
  • [68] Rzepecka, Z., Kalita, J.Z., Stepniak, K. and Wielgosz P. (2015). Time series analysis of radio signals wet tropospheric delays for short term forecast. Acta Geodyn. Geomater., 12(4), 345–54. DOI: 10.13168/AGG.201.
  • [69] Sieradzki, R. (2015). An analysis of selected aspects of irregularities oval monitoring using GNSS observations. J. Atmos. Sol. Terr. Phys., 129, 87–98. DOI: 10.1016/j.jastp.2015.04.017.
  • [70] Sieradzki, R. and Paziewski J. (2018). On the Feasibility of Interhemispheric Patch Detection Using Ground-Based GNSS Measurements. Remote Sens., 10(12), 2044. DOI: 10.3390/rs10122044.
  • [71] Sieradzki, R. and Paziewski, J. (2015). MSTIDs impact on GNSS observations and its mitigation in rapid static positioning at medium baselines. Ann. Geophys., 58(6), A0661. DOI: 10.4401/ag-6891.
  • [72] Sieradzki, R. and Paziewski, J. (2016). Study on reliable GNSS positioning with intense TEC fluctuations at high latitude. GPS Solut., 20(3), 553–563. DOI: 10.1007/s10291-015-0466-0.
  • [73] Stepniak, K., Bock, O. and Wielgosz, P. (2018). Reduction of ZTD outliers through improved GNSS data processing and screening strategies. Atmos. Meas. Tech., 11, 1347–1361. DOI: 10.5194/amt-11-1347-2018.
  • [74] Sun, Y.-Y., Liu, J.-Y., Tsai, H.-F. and Krankowski, A. (2017). Global ionosphere map constructed by using total electron content from ground-based GNSS receiver and FORMOSAT-3/COSMIC GPS occultation experiment. GPS Solut., 21(4), 1583–1591. DOI: 10.1007/s10291-017-0635-4.
  • [75] Tomaszewski, D. (2017). Concept of INS/GPS integration algorithm designed for MEMS based navigation platform. Conference Paper. In Environmental Engineering 10th International Conference, 2017 Vilnius, Lithuania. DOI: 10.3846/enviro.2017.246.
  • [76] Tomaszewski, D., Rapinski, J. and Pelc-Mieczkowska, R. (2017). Concept of AHRS Algorithm Designed for Platform Independent Imu Attitude Alignment. Reports on Geodesy and Geoinformatics, 104(1), 33–47. DOI: 10.1515/rgg-2017-0013.
  • [77] Tomaszewski, D., Rapinski, J. and Smieja, M. (2015). Analysis of the noise parameters and attitude alignment accuracy of INS conducted with the use of MEMS - based integrated navigation system. Acta Geodyn. Geomater., 12(2), 197–208. DOI: 10.13168/AGG.2015.0017.
  • [78] Werner, M., Kryza, M., Skjøth, C.,Wałaszek, K., Dore, A., Ojrzynska, H. and Kapłon, J. (2016). Aerosol-Radiation Feedback and PM10 Air Concentrations Over Poland. Pure Appl. Geophys., 174 (2), 551–568. DOI: 10.1007/s00024-016-1267-2.
  • [79] Wilgan, K. (2015). Zenith total delay short-term statistical forecasts for GNSS Precise Point Positioning. Acta Geodyn. Geomater., 12(4), 335–343. DOI: 10.13168/AGG.2015.0035.
  • [80] Wilgan, K., Hadas, T., Hordyniec, P. and Bosy, J. (2017a). Real-time precise point positioning augmented with high-resolution numerical weather prediction model. GPS Solut., 21(3), 1341–1353. DOI: 10.1007/s10291-017-0617-6.
  • [81] Wilgan, K., Hurter, F., Geiger, A., Rohm, W. and Bosy, J. (2017b). Tropospheric refractivity and zenith path delays from least-squares collocation of meteorological and GNSS data. J. Geod., 91 (2), 117–134. DOI: 10.1007/s00190-016-0942-5.
  • [82] Wilgan, K., Rohm, W. and Bosy, J. (2015). Multi-observation meteorological and GNSS data comparison with Numerical Weather Prediction model. Atmos. Res., 156, 29–42. DOI: 10.1016/j.atmosres.2014.12.011.
  • [83] Zehentner, N. and Mayer-Gürr, T. (2016). Precise orbit determination based on raw GPS measurements. J. Geod., 90(3), 275–286. DOI: 10.1007/s00190-015-0872-7.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-863bd692-a04e-4083-bd6f-b5c34270093a
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.