PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Parallel implementation of a PIC simulation algorithm using OpenMP

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Konferencja
Federated Conference on Computer Science and Information Systems (15 ; 06-09.09.2020 ; Sofia, Bulgaria)
Języki publikacji
EN
Abstrakty
EN
Particle-in-cell (PIC) simulations are focusing on the individual trajectories of a very large number of particles in self-consistent and external electric and magnetic fields; they are widely used in the study of plasma jets, for example. The main disadvantage of PIC simulations is the large simulation runtime,which often requires a parallel implementation of the algorithm. The current paper focuses on a PIC1d3v simulation algorithm and describes the successful implementation of a parallel version of it on a multi-core architecture, using OpenMP, with very promising experimental and theoretical results.
Rocznik
Tom
Strony
381--385
Opis fizyczny
Bibliogr. 21 poz., wz., tab.
Twórcy
autor
  • Technical University of Cluj-Napoca, Romania, Computer Science Department
autor
  • Technical University of Cluj-Napoca, Romania, Computer Science Department
  • Technical University of Cluj-Napoca, Romania, Computer Science Department
  • Technical University of Cluj-Napoca, Romania, Computer Science Department
  • Institute of Space Science, Magurele, Romania
autor
  • Institute of Space Science, Magurele, Romania
Bibliografia
  • 1. Omura, Y., Matsumoto, H. “KEMPO1: Technical Guide to One-dimensional Electromagnetic Particle Code", in Computer Space Plasma Physics: Simulation Techniques and Software, edited by H. Matsumoto and Y. Omura, pp. 21-65, Terra Scientific Publishing Company, Tokyo, 1993.
  • 2. Voitcu, G. "Kinetic simulations of plasma dynamics across magnetic fields and applications to the physics of planetary magnetospheres”, PhD thesis, University of Bucharest, Romania, 2014.
  • 3. Birdsall, C. K., Langdon, A. B.“Plasma physics via computer simulation”, Boca Raton: CRC Press, 1991, http://dx.doi.org/10.1201/9781315275048.
  • 4. Hockney, R. W., Eastwood, J. W. “Computer simulation using particles”, Boca Raton: CRC Press, 1988, http://dx.doi.org/10.1201/9780367806934.
  • 5. Plaschke, F., Hietala, H., Archer, M., Blanco-Cano, X., Kajdic, P., Karlsson, T., Lee, S. H., Omidi, N., Palmroth, M., Roytershteyn, V., Schmid, D., Sergeev, V., Sibeck, D. Jets Downstream of Collisionless Shocks, Space Science Reviews, 214, 81, 2018, http://dx.doi.org/10.1007/s11214-018-0516-3.
  • 6. Hietala, H., Partamies, N., Laitinen, T. V., Clausen, L. B. N., Facsko, G., Vaivads, A., Koskinen, H. E. J., Dandouras, I., Reme, H., Lucek, E. A. “Supermagnetosonic subsolar magnetosheath jets and their effects: from the solar wind to the ionospheric convection”, Annales Geophysicae, 30, 33, 2012, http://dx.doi.org/10.5194/angeo-30-33-2012.
  • 7. Archer, M. O., Hietala, H., Hartinger, M. D., Plaschke, F., Angelopoulos, V. “Direct observations of a surface eigenmode of the dayside magnetopause”, Nature Communications, 10:615, 2019, http://dx.doi.org/10.1038/s41467-018-08134-5.
  • 8. Karlsson, T., Liljeblad, E., Kullen, A., Raines, J. M., Slavin, J. A., Sundberg, T. “Isolated magnetic field structures in Mercury’s magnetosheath as possible analogues for terrestrial magnetosheath plasmoids and jets”, Planetary and Space Science, 129, 61, 2016, http://dx.doi.org/10.1016/j.pss.2016.06.002.
  • 9. Nishikawa, K.-I., Frederiksen, J. T., Nordlund, A., Mizuno, Y., Hardee, P. E., Niemiec, J., Gomez, J. L., Peer, A., Dutan, I., Meli, A., Sol, H., Pohl, M., Hartmann, D. H. “Evolution of global relativistic jets: collimations and expansion with kKHI and the Weibel instability”, The Astrophysical Journal, 820:94, 2016, http://dx.doi.org/10.3847/0004-637X/820/2/94.
  • 10. Echim, M. M., Lemaire, J. F. “Laboratory and numerical simulations of the impulsive penetration mechanism”, Space Science Reviews, 92, 565, 2000, http://dx.doi.org/10.1023/A:1005264212972.
  • 11. Voitcu, G., Echim, M. “Transport and entry of plasma clouds/jets across transverse magnetic discontinuities: Three-dimensional electromagnetic particle-in-cell simulations”, Journal of Geophysical Research - Space Physics, 121, 5, 4343-4361, 2016, http://dx.doi.org/10.1002/2015JA021973.
  • 12. Voitcu, G., Echim, M. „Tangential deflection and formation of counterstreaming flows at the impact of a plasma jet on a tangential discontinuity”, Geophysical Research Letters, 44, 12, 5920-5927, 2017, http://dx.doi.org/10.1002/2017GL073763.
  • 13. Voitcu, G., Echim, M. „Crescent-shaped electron velocity distribution functions formed at the edges of plasma jets interacting with a tangential discontinuity”, Annales Geophysicae, 36, 1521-1535, 2018, http://dx.doi.org/10.5194/angeo-36-1521-2018.
  • 14. Bart, G, Peltz, C, Bigaouette, N, Fennel, T, Brabec, T, Varin, C. Massively parallel microscopic particle-in-cell. Computer Physics Communications. 2017 Oct 1;219:269-85.
  • 15. Miller, KG, Lee, RP, Tableman, A, Helm, A, Fonseca, RA, Decyk, VK, Mori, WB. Dynamic load balancing with enhanced shared-memory parallelism for particle-in-cell codes. arXiv preprint https://arxiv.org/abs/2003.10406. 2020 Mar 23.
  • 16. Shah, K, Phadnis, A, Shah, M, Chaudhury, B. Parallelization of the Particle-In-Cell Monte Carlo Collision (PIC-MCC) Algorithm for Plasma Simulation on Intel MIC Xeon Phi Architecture. In proceedings of International Conference for High Performance Computing 2017.
  • 17. Sáez, X., Soba, A., Cela, J.M., Sánchez, E., Castejón, F. Particle-In-Cell algorithms for Plasma simulations on heterogeneous architectures. In 2011 19th International Euromicro Conference on Parallel, Distributed and Network-Based Processing 2011 Feb 9 pp. 385-389, http://dx.doi.org/10.1109/PDP.2011.42
  • 18. Marszałek, Z., Woźniak, M., Połap, D., Fully flexible parallel merge sort for multicore architectures. Complexity, 2018, http://dx.doi.org/10.1155/2018/8679579
  • 19. Palkowski, M., Bielecki, W., "Parallel cache-efficient code for computing the McCaskill partition functions," 2019 Federated Conference on Computer Science and Information Systems (FedCSIS), Leipzig, Germany, 2019, pp. 207-210, http://dx.doi.org/10.15439/2019F8.
  • 20. Roth, M., De Keyser, J., Kuznetsova, M. M. “Vlasov theory of the equilibrium structure of tangential discontinuities in space plasmas”, Space Science Reviews, 76, 251, 1996, http://dx.doi.org/10.1007/BF00197842.
  • 21. Echim, M. M., Lemaire, J. F., Roth M. “Self-consistent solution for a collisionless plasma slab in motion across a magnetic field”, Physics of Plasmas, 12, 072904, 2005, http://dx.doi.org/10.1063/1.1943848.
Uwagi
1. This work was supported by the Romanian Ministry of Research and Innovation via a PCCDI grant (PCCDI Project no. 18 PCCDI/2018). Gabriel Voitcu and Marius Echim acknowledge support from the Romanian Ministry of Education and Research through the Core Programme LAPLAS VI/2020.
2. Track 2: Computer Science & Systems
3. Technical Session: Advances in Computer Science & Systems
4. Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-863abad9-3a19-4b1d-b794-c028f04433c2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.