PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Transient flow simulation, analysis and protection of pipeline systems

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper investigated the problems and impacts of transient flow in pipeline systems due to pump power failure. The impact of different protection devices was presented to assure surge protection for the pipeline system. A model via Bentley HAMMER V8.0 Edition was employed to analyse and simulate hydraulic transients in the pipeline system, and protection alternatives were studied. Surge protection included using only an air vessel, using an air vessel and two surge tanks, and employing five air vessels and vacuum breaker. The obtained results for pressures, heads, and cavitation along the pipeline system were graphically presented for various operating conditions. Using five air vessels with vacuum breaker valve as surge protection proved to be more effective and economical against pump power failure. Changing the flow density did not have a significant impact on the pressures. For protection with an air vessel; it was concluded that the value 40% of the original diameter for inlet pipe diameter of air vessel, and the value of 2/3 of original pipe diameter were critical values for the transient pressures. Cast iron pipes proved to be the best pipe material for all studied volumes of the air vessel. For protection with an air vessel and two surge tanks; as the inlet pipe diameters increased the maximum pressures increased and the minimum pressures decreased. Regression analyses were performed obtaining equations to predict the pressures according to the inlet pipe diameter, the area of surge tank, and the pipe diameter.
Wydawca
Rocznik
Tom
Strony
47--60
Opis fizyczny
Bibliogr. 23 poz., rys., tab.
Twórcy
  • Benha University, Faculty of Engineering at Shoubra, Department of Civil Engineering, Cairo, Egypt
  • Ministry of Water Resources and Irrigation, No. 1 Gamal abd El Nasiar ST. Embaba, Giza, Egypt
  • Benha University, Faculty of Engineering at Shoubra, Department of Civil Engineering, Cairo, Egypt
Bibliografia
  • ABUIZIAH I., OULHAJ A., SEBARI K., OUAZAR D. 2013. Sizing the protection devices to control water hammer damage. International Journal of Civil, Environmental, Structural, Construction and Architectural Engineering. Vol. 7(11) p. 894–899.
  • BERGANT A., SIMPSON A.R., SIJAMHODZIC E. 2012. Water hammer analysis of pumping system for control of water in underground mines [online]. 4th International Mine Water Association. Ljubliana, Slovenia. [Access 20.12.2019]. Available at: http://mwen.info/docs/imwa_1991/IMWA1991_Bergant_009.pdf
  • BERGANT A., KRUISBRINK A., ARREGUI F. 2012. Dynamic behavior of air valves in a large-scale pipeline apparatus. Strojniški vestnik – Journal of Mechanical Engineering. Vol. 58(4) p. 225–237. DOI 10.5545/sv-jme.2011.032.
  • CARLSSON J. 2016. Water hammer phenomenon analysis using the method of characteristics and direct measurements using a “stripped” electromagnetic flow meter [online]. M.Sc. Thesis. Stockholm, Sweden. Royal Institute of Technology, SE-106 91 pp. 52. ISSN 0280-316X [Access 10.10.2019]. Available at: https://www.semanticscholar.org/paper/Water-Hammer-Phenomenon-Analysis-using-the-Methoda-Carlsson/85a8886aa 362f70b286a47aee51c7409d4f3450f
  • EL-HAZEK A.N. 2018. Hydro pneumatic tank design for surge protection of irrigation pipeline systems. Journal of Scientific Research & Reports. Vol. 18(6) p. 1–15. DOI 10.9734/JSRR/ 2018/40253.
  • HERASYMOV H.H., GERASIMOV I.G., IVANOV S.Y., PINCHUK O.L. 2019. Experimental study of the effectiveness of a combined closure of the end gate pipeline valve. Archives of Hydro-Engineering and Environmental Mechanics. Vol. 66. No. 1–2 p. 3–13. DOI 10.1515/heem-2019-0001.
  • JUNG B.S., KARNEY B.W., BOULOS P.F., WOOD D.J. 2007. The need for comprehensive transient analysis of distribution systems. Journal – American Water Works Association. Vol. 99(1) p. 112–123. DOI 10.1002/j.1551-8833.2007.tb07851.x.
  • KARNEY B.W., MCINNIS D. 1992. Efficient calculation of transient flow in simple pipe networks. Journal of Hydraulic Engineering. Vol. 118(7) p. 1014–1030. DOI 10.1061/(ASCE) 0733-9429(1992)118:7(1014).
  • KOPACZ M., KOWALCZYK A., SMOROŃ S., OSTRACH Z. 2018. Sustainable management of water resources in terms of the water needs for agricultural purposes in small rural communes based on the example of the Grybów commune, Poland. Journal of Water and Land Development. No. 39 p. 67–76. DOI 10.2478/jwld-2018-0060.
  • KUNDU P.K., COHEN I.M, DOWLING D.R. 2011. Fluid mechanics. 5th ed. Cambridge. Academic Press. ISBN 978-0123821003 pp. 920.
  • LAHLOU Z.M. 2009. Tech brief – water hammer [online]. National Drinking Water Clearinghouse at West Virginia University. [Access 20.04.2019]. Available at: https://www.yumpu.com/en/document/read/30237717/water-hammer-national-environmental-services-center-west-
  • LAKEHAL A., LAOUACHERIA F. 2017. Reliability based rehabilitation of water distribution networks by means of Bayesian networks. Journal of Water and Land Development. No. 34 p. 163–172. DOI 10.1515/jwld-2017-0051.
  • LAROCK B.E., JEPPSON R.W., WATTERS G.Z. 1999. Introduction to transient flow, hydraulics of pipeline. 1st ed. Boca Raton. CRC Press. ISBN 9780849318061 pp. 552.
  • LOH K., TIJSSELING A.S. 2014. Water hammer (with FSI): Exact solution - parallelization and application. Pressure Vessels & Piping Conference. July 20–24, 2014, Anaheim, California, USA. American Society of Mechanical Engineers, Pressure Vessels and Piping Division (Publication) PVP 2014-28489. DOI 10.1115/PVP2014-28489.
  • ORD S.C. 2006. Water hammer – do we need to protect against it? How to predict it and prevent it damaging pipelines and equipment. ACS Symposium Series. No. 151 p. 1–20.
  • PATTERSON R., COVEY G. 2014. Water hammer and other pipe transient flow problems. Appita Journal. Vol. 67(4) p. 283–287.
  • SALEHI F. 2010. Solve liquid-hammer problems [online]. Houston. Hydrocarbon Processing. [Access 04.03.2019]. Available at: http://www.hydrocarbonprocessing.com/magazine/2010/april-2010/pipingreliability/solve-liquid-hammer-problems
  • SALMANZADEH M. 2013. Numerical method for modeling transient flow in distribution systems. IJCSNS International Journal of Computer Science and Network Security. Vol. 13(1) p. 72–78.
  • SHARMA S. 2019. Correlating soil and urban planning for sustainable water cycle. Journal of Water and Land Development. No. 40 (I–III) p. 137–148. DOI 10.2478/jwld-2019-0015.
  • TEZKAN T., GOKKUS U., SINIR G. 1998. Analysis of unsteady flow in complex pipe system by the method of characteristics. Mechanical and Computational Applications. Vol. 3(1) p. 27–36.
  • VEREIDE K., SVINGEN B., NIELSEN T.K., LIA L. 2017. The effect of surge tank throttling on governor stability, power control, and hydraulic transients in hydropower plants. IEEE Transactions on Energy Conversion. Vol. 32(1) p. 91–98.
  • YU X.D., ZHANG J., MIAO D. 2015. Innovative closure law for pump-turbines and field test verification. Journal of Hydraulic Engineering. Vol. 141(3) p. 1–9. DOI 10.1061/(ASCE)HY. 1943-7900.0000976.
  • WOOD D.J. 2005. Water hammer analysis – essential and easy. Journal of Environmental Engineering. Vol. 131(8) p. 1123–1131. DOI 10.1061/(ASCE)0733-9372(2005)131:8(1123).
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-863a5bc1-08fa-4ac6-80d7-9d61417e0ac0
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.