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Abstract. This article provides structural model analysis of characteristics of the vehicle 

movement during the shooting from a laser guided short-range air defence system 

mounted on it. Every shot causes a recoil, which significantly affects vibration of the 

vehicle and determines the shortest time duration between each two successive shots. The 

numerical simulation with MATLAB software enabled us verification of the created 

structural model and it facilitated the understanding of mechanical phenomena which are 

the most important for achieving the proper vibrational characteristics of the system. Main 

modes of the system movements during missile launch and their effect on the launcher 

and the vehicle were determined. 

Keywords: Mobile Short-Range Air Defense System, M-SHORAD, Laser Guided Short-

Range Air Defense System 
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1. INTRODUCTION 

 
The current geopolitical situation makes us rethink and review the state 

defence plans. Ensuring high operational properties of ground-based air defence 

systems against low-flying aircrafts such as helicopters is one of the main 

objectives. According to the NATO classification, ground-based air defence 

assets are divided into very short range, short-range, medium-range, and long-

range systems [14]. Very short-range air defence systems are the most popular 

due to their simplicity and low acquisition price. Very short-range air defence 

systems are Man-portable air-defence (MANPAD) systems and mobile short-

range air defence (MSHORAD) systems [1]. The specific feature of MANPAD 

systems is the shot from soldiers' shoulder, as well as by using a tripod placed on 

the surface of the ground. The specific feature of MSHORAD is the shot from  

a vehicle, on which the air defence system is mounted. The successful shooting 

from the short-range air defence system mainly depends on the personnel's 

experience and training. 
 

  
 

Fig. 1. Mobile short-range air defence system [1] 

 

After firing, the air defence system causes vibrations, which affect the whole 

structure of the armoured vehicle. Vehicle vibrations have a substantial impact 

on the mobility safety of the carrier. High vibration amplitudes increase driver 

and crew fatigue, resulting in hazardous driving conditions. The impact of the 

vibrations on driving safety during shooting must be analysed, [2]. The primary 

function of the suspension is to offer the passengers a comfortable ride by 

insulating them from the unevenness of the road surface, as well as to stabilise 

the vehicle when it turns, brakes, or accelerates. 
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Vertical and horizontal elasticity, damping, and friction are the primary 

elements that influence the driving comfort of a vehicle. As the wheels rise and 

fall due to uneven road surfaces, the springs quickly act as energy storage devices 

and, as a result, considerably lower the amount of impact stress sent through the 

suspension to the vehicle structure. The energy of the impact load is proportional 

to the product of the applied force and the action-limiting distance of the spring 

medium. A soft spring of low coefficient of elasticity, that permits a substantial 

deflection from the average value, will reduce the magnitude of forces conveyed 

to the occupants of a car. Shooting from a mobile short-range air defence system 

has an additional impact on the vehicle chassis. This effect intensifies when 

travelling on the road with undulations, [3, 4, 5]. 

 

2. STRUCTURAL MODEL FOR THE ANALYSIS  

OF VIBRATIONS OF THE MSHORAD SYSTEM 

 
For simulation of mechanical vibrations of the vehicle during the live firings, 

the structural dynamic model, based on the standard discrete system approach, 

was developed [6, 7]. The vehicle with the mounted firing system consists of rigid 

bodies each of which perform planar motion. The rigid bodies are connected by 

springs representing elasticities of the structural joints, as they are in the real 

structure. The motion of each body is described by the motion of its mass centre 

C and the rotation angle . Spring is attached to the body at the point P, which 

can be different from the mass centre. Its position, with respect to the mass centre, 

is described by the distance L and the angle φ. Figure 2 presents a sample body 

in its standard position, where the mass centre is at the origin of the coordinates 

and Fig. 3 represents the displaced position of the body. 

                        
    Fig. 2. Standard body position                              Fig. 3. Displaced body position  

 

 

In Figure 2, the vector r0 from the mass centre to the point P0 reads as 

0

cos

sin
L





 
  

 
r  (1) 
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In the displaced position (Fig. 3), the vector r and the coordinates of the point 

P read as  

cos sin cos

sin cos sin
L

  

  

   
   

   
r  (2) 

   P P  
x y x y
, C ,C r  (3) 

The displacement of the point of attachment of the spring is obtained by 

combining the displacement vector of the centre of mass and the angle of planar 

rotation about the centre of mass (Fig. 4): 

0

0
y

P

x

r

r




 
  

       
  

 

u u r u  (4) 

 
Fig. 4. Kinematics of a planar body 

 

Each pair of bodies in the structure can be mutually connected by  

a bidirectional mathematical spring. It may exhibit elastic forces in two 

perpendicular directions corresponding to normal and tangential displacement 

directions of the points P1 with respect to the point P2, Figs. 5 and 6. The two 

perpendicular directions of the spring are represented by unit vectors as:  

2 1

2 1( )

P P

norm P P





n  (5) 

y

x

n

n

 
  
 

τ  (6) 

The corresponding normal and tangential stiffness coefficients are denoted 

as kL, kT. 
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Fig. 5. Two-way spring, stiffness 

coefficients kL, kT 

Fig. 6. Spring tension forces in two 

directions 

 

The structural element consists of two planar bodies connected by  

a bidirectional spring. Here, we show how the elastic forces acting on bodies are 

calculated. FL and FT describe the spring tension force in two directions: 

 2 1L P Pk 
L

F u u n  (7) 

 2 1T T P Pk F u u τ  (8) 
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  
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...
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


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
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


  

   

    


    

    


   



r n τ

r n τ

 (9) 

By combining Eqs. (5-9) and assembling the structural equation, we arrive 

to the structural dynamic equation without damping: 

MU + KU = 0  (10) 

In Eq. (10), the structural matrices K and M are assembled of element 

matrices, the formulas of which read as: 
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The stiffness matrix: 

1 2

1 2

1 1 1 1 11 1 1 1 1 12

1 2

1 2

2 2 2 2 21 2 2

K K K K K K
xx xy xr xx xy xr
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(11) 

1 1 1 1 1
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2 2 2 2 2

K k n n k
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(12) 

 

The mass matrix: 

1

1

1

2

2

2

m

m

I
M

m

m

I

 
 
 
 

  
 
 
 
  

 (13) 

where m1, I1, m2, and I2 are the masses and mass moments of inertia of two bodies 

comprising a structural element, and:  
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 (14) 

 

is the nodal displacement vector of the structural element. 

Non-zero solutions of the homogeneous differential equation, whose free 

terms are zero, are called the solutions. We are looking for natural solutions as: 

 ˆ cos t U = U  (15) 

where ω is the natural vibration frequency, Û  is the natural vector of nodal 

amplitudes, and φ is the initial phase of the oscillations. 

After inserting Eq. (15) into dynamic Eq. (10), we obtain the system of 

algebraic equations that have non-zero solutions only if: 

2det( ) 0 K M  (16) 

This equation is called the natural value (eigenvalue) problem. The physical 

meaning of the natural vector are the displacements of the structure harmonically 

oscillating at the natural frequency at the time moment when they reach their limit 

values. Each pair , i

i U  is called the vibration mode of the structure. The number 

of modes is always equal to the number of degrees of freedom of the structure.  
The dynamic equation of free vibrations of the damped (non-conservative) 

system could be obtained by extending Eq. (10) as  

0  MU CU KU  (17) 

where C is the damping matrix.  

Now, two options of analysis are possible. The simplified approach assumes 

the proportional form of the damping matrix as   C M K , where α, β are the 

coefficients the values of which are based on the average decay of transient free 

vibration amplitudes. In such a case, the modal shapes of non-damped free 

vibration problem as Eq. (16) can be used as independent coordinates of the 

damped structure. 

In the general case, the damping matrix C is formed independently of the 

matrices M and K by using the measured damping coefficients in each connection 

between the rigid bodies comprising the structure. This leads to the complex 

eigenvalue problem as:  
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2

det( ) 0   M C K  (18) 

where λ is the complex eigenvalue and it represents both frequency and the decay 

rate of the free vibration amplitude.  

In this work, the research was limited to the analysis of undamped modes of 

the structure of the MSHORAD system. The solution procedure has been 

implemented in the MATLAB software by using the eigenvalue solver eig.  
 

2.1 Boundary conditions  

 
A dynamic model of the MSHORAD system is illustrated in Fig. 7. The 

bidirectional penalty spring c7 represents a hinge of launcher No. 4. Bidirectional 

springs represent the tires and hangers, tires marked 5 and 6, hangers 1 and 2 

which are strengthen easily. 
 

 
Fig. 7. Dynamic model  

 

The structure consists of 4 rigid bodies each of which has 3dof (two 

displacements and one rotation). However, from the total number of 12dof, only 

8dof are active in the model as the wheels are not allowed neither to rotate nor to 

move horizontally. Only up-down vibrations of the wheels are possible because 

of the elasticity of the tires and the suspension. The hinge between vehicle body 

3 and launcher 4 is represented by 2 nodes on each of bodies 3 and 4 connected 

together by the bidirectional penalty spring. The stiffness of the penalty spring is 

chosen much higher than all other stiffnesses in the structure in order to prevent 

any appreciable displacement in the hinge. 

Table 1 shows the values of the quantitative data as stiffnesses of springs 

and damping coefficients of dampers which are necessary for the final 

implementation of the model.  
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Table 1. Input parameters in the dynamic process model [8, 9, 10] 

Parameter Value Parameter Value Parameter Value Parameter Value 

K1 [kN/m] 800000 C4 [kN s/m] 54000 a2 [m] 2.68 m1 [kg] 775 

C1 [kN s/m] 250 K5 [kN/m] 6000000 a3 [m] 1.3 m2 [kg] 1550 

K2 [kN/m] 600000 C5 [kN s/m] 300000 a4 [m] 1 m3 [kg] 3800 

C2 [kN s/m] 11000 K6 [kN/m] 6000000 a5 [m] 0.6 m4 [kg] 80 

K3 [kN/m] 6000000 C6 [kN s/m] 300000 a6 [m] 1.64 I3 [kg m3] 45591 

C3 [kN s/m] 700 C7 [kN s/m] 2e10 a7 [m] 0.82 I4 [kg m3] 895 

K4 [kN/m] 1122000 a1 [m] 2.94 b1 [m] 0.43 α0 π/6 

 

The structural model which represents the missile launch from the mobile 

short-range air defence system RBS-70 has been developed (Fig. 2). The model 

illustrates the first stage of the missile launch motion. The mass centre of the 

vehicle is marked – c3. The physical model describes the interaction between the 

air defence system and the vehicle with mechanical springs with elastic springs 

k1, k2, k3, k4, k5, k6 and the dampers c1, c2, c3, c4, c5, c6. The recoil force of air 

defence systems is F [11,12,13]. The launcher is hinged to the vehicle body. In 

the model, the stiffness of the hinge is represented by the penalty stiffness k7.  
 

3. ANALYSIS OF RESULTS 

 
The dynamic properties in the MSHORAD system structural model were 

analysed using the MATLAB software. The main result of this research was the 

obtained vibration modes of the system.  

The availability of the damping coefficients in the joints of the structure 

principally enables us to form a full non-conservative model. However, in this 

study, the simplification was used by assuming proportional damping as 

explained in section 2. In case of proportional damping, the modal shapes of an 

undamped system may be used as independent coordinates and they may be 

regarded as the most important characteristics of the structure.  

Further, we present the modes of vibration obtained by using the structural 

model. The structure has 8dof, however, we present only 6 the lower modes. The 

remaining two higher modes are caused by the elasticity of the penalty spring in 

two perpendicular directions. Their vibration frequencies are determined by 

penalty stiffness and they are far above the range of the engineering importance.  

The modes describe the harmonic vibration in which all bodies of the 

structure move at the same frequency and the same phase. The graphical 

representation of the modes illustrates the deformed shape of the structure as its 

displacements are at the maximum of their absolute values.  

The results of the first 6 modal shapes and modal frequencies are provided 

in Table 2, as well as they are illustrated in Figs. 8-13. Norming multipliers for 

modal shapes are chosen such that 1T

i i y My , where yi is the vector-column of 

the i-th modal shape and M is the mass matrix of the structure. 
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Table 2. The results of the first 6 modal shapes and modal frequencies 

Mode number 1 2 3 4 5 6 

Modal frequency 

(Hz) 
2.19576 2.67647 7.98915 8.43164 9.89058 19.3241 

Displacement y of 

rear wheel 
-0.0006 -0.0155 0.0023 0.0026 -0.0017 0.0322 

Displacement y of 

front wheel 
0.0130 -0.0031 -0.0034 -0.0028 0.0212 0.0004 

Displacements x, y 

of mass centre and 

rotation angle of 

vehicle body 

-0.0023 -0.0022 -0.0151 -0.0040 -0.0019 0.0002 

0.0084 -0.0108 0.0007 0.0011 -0.0063 -0.0055 

0.0031 0.0027 -0.0005 -0.0004 -0.0017 0.0013 

Displacements x, y 

of mass centre and 

rotation angle of 

launcher 

-0.0012 -0.0011 -0.0190 0.0104 -0.0011 -0.0001 

0.0098 -0.0098 0.0060 -0.0205 -0.0091 -0.0038 

-0.0024 -0.0025 0.0085 -0.0311 -0.0016 0.0006 

  

 
 

Fig. 8. Mode No. 1, frequency f = 2.19576 Hz            

 

         
 

Fig. 9. Mode No. 2 , frequency f = 2.67647 Hz 
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Figure 8 describes mode No. 1 vibration when it reaches maximum 

displacement which is f = 2.19576 Hz. Figure 9 describes mode No. 2 vibration 

when it reaches maximum displacement which is f = 2.67647 Hz 

    
 

Fig. 10. Mode No. 3 , frequency f = 7.98915 Hz        

    
      

Fig. 11. Mode No. 4 , frequency f = 8.43164 Hz 

 

Figure 10 describes mode No. 3 vibration when it reaches maximum 

amplitude which is f = 7.98915 Hz. Figure 11 describes mode No. 4 vibration 

when it reaches maximum amplitude which is f = 8.43164 Hz 

Figure 12 describes mode No. 5 vibration when it reaches maximum 

displacement, f = 9.89058 Hz. Figure 13 describes mode No. 6 vibration when it 

reaches maximum displacement, f = 19.3241 Hz 
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Fig. 12. Mode No. 5 , frequency f = 9.89058 Hz        

 
 

Fig. 13. Mode No. 6 , frequency f = 19.3241 Hz 

 

4. CONCLUSIONS 

 
In this work, the first stage of the launch of the short-range air defence 

system RBS-70 missiles was analysed. After theoretical research, the structural 

model of the first stage of the launch of the short-range air defence system 

missiles was developed.  

Computer modelling and analysis of physical phenomena have been 

performed, considering the analytical dependence related to the system motion. 

The system movements during missile launch and their effect on the launcher 

were determined according to the initial system parameters.  

The model has been developed by using simplifications, such as small 

vibration amplitudes and proportional damping. Therefore, the research will be 

continued in order to find the vibration modes of the non-conservative system, 

where both modal shapes and frequencies are expressed in terms of complex 

numbers.  
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This will be done by using non-proportional damping matrix, where the 

measured damping coefficients are employed for obtaining the damping matrix, 

and for solving the complex eigenvalue problem. The chosen approach of the 

standard discrete system for building the dynamic model allows us easy transition 

to transient vibration analysis, as well as, to large displacement vibrations of the 

system.  
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