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Abstract. The Cauchy problem for the Dullin-Gottwald-Holm (DGH) equation

ut − α2uxxt + 2ωux + 3uux + γuxxx = α2(2uxuxx + uuxxx)

with zero boundary conditions (as |x| → ∞) is treated by the Riemann-Hilbert approach
to the inverse scattering transform method. The approach allows us to give a representation
of the solution to the Cauchy problem, which can be efficiently used for further studying
the properties of the solution, particularly, in studying its long-time behavior. Using the
proposed formalism, smooth solitons as well as non-smooth cuspon solutions are presented.
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1. INTRODUCTION

The Dullin-Gottwald-Holm (DGH) equation

ut − α2uxxt + 2ωux + 3uux + γuxxx = α2(2uxuxx + uuxxx), (1.1)

where ω, α and γ are real parameters, belongs to the class of unidirectional nonlinear
wave equations, obtained via asymptotic expansions around simple wave motion of the
Euler equations for shallow water in a particular Galilean frame. Actually, (1.1) was
first derived, by using asymptotic expansions, in [12]. Before [12], integrable equations
similar to (1.1) were derived in the context of the theory of hereditary symmetries [18].
In [17], equation (1.1) was re-derived by using asymptotic expansions directly in the
Hamiltonian for the Euler equations in the shallow water regime and was proved to be
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correct to one order higher than for the Korteweg-de Vries (KdV) by using methods
of asymptotic expansions and near-identity transformations.

Equation (1.1) is also called the CH-γ equation: it combines the linear dispersion
of the Korteweg-de Vries (KdV) equation and the nonlinear/nonlocal dispersion of the
Camassa-Holm (CH) equation [12]

ut − uxxt + 2ωux + 3uux = 2uxuxx + uuxxx. (1.2)

Indeed, if γ = 0 and α = 1, then (1.1) reduces to the CH equation whereas if α = 0,
(1.1) reduces to the KdV equation.

The DGH equation (1.1) is integrable in the sense that it possesses the Lax pair
representation: (1.1) is the compatibility condition for the linear equations involving
the spectral parameter η [17]:

ψxx = 1
4α2ψ + η(m(x, t) + Ω)ψ, (1.3a)

ψt =
(

1
2α2

(
1
η

+ 2γ
)
− u(x, t))

)
ψx + 1

2ux(x, t)ψ, (1.3b)

where m is the momentum variable: m := u− α2uxx, and Ω := ω + γ
2α2 .

The Cauchy problem for (1.1) has been studied in [20, 21]. It has been shown
that this equation is locally well-posed for initial data u0 ∈ Hs(R) with s > 3

2 .
The scattering problem for (1.1) is considered in [20] by examining the associated
iso-spectral problem. The inverse scattering problem for the DGH equation is discussed
in [1, 13, 20], where the reduction, by the Liouville transformation, of the iso-spectral
problem to the the classical Sturm-Liouville problem is used. In [13], the Poisson
brackets are computed and the action-angle variables are expressed in terms of
the scattering data.

The change of variables

u(x, t) = v

(
x

α
,
t

α

)
+ γ

α2 (1.4)

removes γ reducing (1.1) to the CH equation (1.2) (in variables x̃ = x
α , t̃ = x

α ) with
the linear dispersion parameter ω̃ = ω + 3γ

2α2 whereas the change of variables

u(x, t) = v

(
x

α
+ γ

α3 t,
t

α

)
(1.5)

reduces (1.1) to (1.2) (in variables x̃ = x
α + γ

α3 t, t̃ = x
α ) with the linear dispersion

parameter ω̃ = ω + γ
2α2 . Now notice that if one considers (1.1) on an infinite spatial

domain (whole line or a half-line), then transformation (1.4) changes the boundary
condition at infinity: if u→ 0 as x→∞ for (1.1), then v → γ

α2 as x→∞ for (1.2). On
the other hand, transformation (1.5), while keeping the boundary condition unchanged,
uses a moving frame of reference, which would change the boundary conditions (from
fixed to moving ones), if one wants to consider, say, the initial boundary value problem
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for the DGH equation (1.1) posed on the half-line x > 0 (with boundary values u(0, t)
and ux(0, t)). These observations justify the necessity of the analysis of the DHG
equation directly in the form (1.1).

The analysis of Camassa-Holm-type equations by using the inverse scattering ap-
proach was initiated in [14,15,19] for the Camassa-Holm equation (1.2) itself. A version
of the inverse scattering method for the CH equation based on a Riemann-Hilbert (RH)
factorization problem was proposed in [6,8] (another RH formulation of the inverse
scattering transform is presented in [16]). The RH approach has proved its efficiency in
the study of the long-time behavior of solutions of both initial value problems [4, 5, 7]
and initial boundary value problems [9, 10] for the CH equation.

In this paper we present the Riemann-Hilbert problem formalism for the inverse
scattering approach to the initial value problem for the DGH equation:

ut − α2uxxt + 2ωux + 3uux + γuxxx = α2(2uxuxx + uuxxx), t > 0,−∞ < x < +∞,
(1.6)

u(x, 0) = u0(x), −∞ < x < +∞. (1.7)

We assume that ω + γ
2α2 > 0 and that u0(x) decays to 0 sufficiently fast:

u0(x)→ 0, x→ ±∞.

Moreover, u0(x) is assumed to satisfy the sign condition:

u0(x)− α2u0xx(x) + ω + γ

2α2 > 0, −∞ < x < +∞.

The sign condition implies [20] the existence of a global solution u(x, t) decaying to 0
for all t > 0:

u(x, t)→ 0, x→ ±∞

and satisfying the positivity condition

u(x, t)− α2uxx(x, t) + ω + γ

2α2 > 0.

In Section 2 we present the appropriate Lax pairs associated with the DGH
equation, whose dedicated solutions are used in Section 3 for formulating the matrix
Riemann-Hilbert problem suitable for solving the Cauchy problem (1.6), (1.7). Then we
give (Theorem 3.3) a representation of the solution u(x, t) problem (1.6), (1.7) in terms
of the solution of this RH problem evaluated at a distinguished point of the complex
plane of the spectral parameter. In Section 4 we discuss the relationship between the
matrix and vector formalism for the RH problem and show that the solution of the
RH problem gives a solution to the nonlinear equation. The RH formalism is then
used in Section 5 to present smooth as well as non-smooth (cusped) soliton solutions
for (1.1).
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2. LAX PAIRS AND EIGENFUNCTIONS

The Riemann-Hilbert formalism for integrable nonlinear equations is based on using
appropriately defined eigenfunctions, i.e., solutions of the Lax pair equations, whose
behavior as functions of the spectral parameter is well-controlled in the whole extended
complex plane. For this purpose, it is convenient to work with matrix (2×2 in the case
of the DGH equation) Lax pair equations, which are first order differential equations.
Thus the first step in finding the appropriate form of the Lax pair is to introduce the
vector

Φ :=
(
ψ
ψx

)

and to rewrite the Lax pair (1.3) in the form

Φx = UΦ, (2.1a)
Φt = V Φ, (2.1b)

where Φ ≡ Φ(x, t, η) and

U(x, t, η) =
(

0 1
1

4α2 + η(m+ Ω) 0

)
, (2.1c)

V (x, t, η) =




1
2ux

1
2α2

(
1
η + 2γ

)
− u(

1
2α2

(
1
η + 2γ

)
− u
) ( 1

4α2 + η(m+ Ω)
)

+ u−m
2α2 − 1

2ux


 .

(2.1d)

Notice that the coefficient matrices U and V are traceless, which provides that
the determinant of a matrix solution to (2.1) composed from two vector solutions is
independent of x and t.

Also notice that U and V have singularities (in the extended complex η-plane) at
η = 0 and at η =∞. In order to control the behavior of solutions to (2.1) as functions
of the spectral parameter η (which is crucial for the Riemann-Hilbert method), we
follow a strategy similar to that adopted for the CH equation [6, 8].

Namely, in order to control the large η behavior of solutions of (2.1), we will
transform this Lax pair to the form (cf. [2, 6, 8]):

Φ̂x +QxΦ̂ = Û Φ̂, (2.2a)
Φ̂t +QtΦ̂ = V̂ Φ̂, (2.2b)

whose coefficients Q(x, t, η), Û(x, t, η), and V̂ (x, t, η) have the following properties:

(i) Q is diagonal and is unbounded as η →∞;
(ii) Û = O(1) and V̂ = O(1) as η →∞;
(iii) the diagonal parts of Û and V̂ decay as η →∞;
(iv) Û → 0 and V̂ → 0 as x→ ±∞.
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As in the case of the CH equation [6, 8], we perform this transformation in two
steps:
(i) Transform (2.1) into a system where the leading (as η →∞) terms are represented

as products of (x, t)-independent (matrix-valued) and (x, t)-dependent (scalar)
factors.

(ii) Diagonalize the (x, t)-independent factors.
First, introducing the new spectral parameter k by

−k2 = η + 1
4α2Ω

and the new vector function Φ̃ ≡ Φ̃(x, t, k) by

Φ̃ = DΦ,

where
D(x, t) =

(
(m+ Ω) 1

4 0
0 (m+ Ω)− 1

4

)
,

transforms (2.1a) into
Φ̃x = Ũ Φ̃, (2.3)

where

Ũ(x, t; k) =
√

(m+ Ω)
(

0 1
−k2 0

)
+ mx

4(m+ Ω)

(
1 0
0 −1

)
− m

4α2Ω
√

(m+ Ω)

(
0 0
1 0

)
.

(2.4)

Second, introducing Φ̂ ≡ Φ̂(x, t, k) by Φ̂ = P Φ̃, where P = 1
2

(
1 − 1

ik
1 1

ik

)
, diago-

nalizes the first term in (2.4) and transforms (2.3) into

Φ̂x + ik
√
m+ Ωσ3Φ̂ = Û Φ̂, (2.5)

where
Û(x, t, k) = mx

4(m+ Ω)

(
0 1
1 0

)
− m

8ikα2Ω
√
m+ Ω

(
−1 −1
1 1

)
(2.6)

and σ3 =
(

1 0
0 −1

)
.

Accordingly, the t-equation (2.1b) of the Lax pair is transformed into

Φ̂t + ik

{ √
Ω

2α2η(k) −
(
u− γ

α2

)√
m+ Ω

}
σ3Φ̂ = V̂ Φ̂, (2.7)

where

V̂ (x, t, k) =− mx

(
u− γ

α2

)

4(m+ Ω)

(
0 1
1 0

)
+
√

Ω−
√
m+ Ω

2α2
ik

η(k)σ3

+
{(

u− γ

α2 −
1

2α2η(k)

)
m

8ikα2Ω
√
m+ Ω

+ u−m
4ikα2

√
m+ Ω

}(
−1 −1

1 1

)
.

(2.8)
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Notice that the terms in {. . . } in the l.h.s. of (2.7) were chosen in such a way
that (2.7) be consistent with the desired form (2.2) of the Lax pair. Indeed, if one
introduces

p(x, t, k) :=
√

Ωx−
∞∫

x

(
√
m+ Ω−

√
Ω)dξ + 1

2α2

(
1

η(k) + 2γ
)√

Ωt (2.9)

and
Q(x, t, k) := ikp(x, t, k)σ3, (2.10)

then it is clear that px =
√
m+ Ω. On the other hand, the fact that

pt =
√

Ω
2α2η

−
(
u− γ

α2

)√
m+ Ω

follows from the “conservation law” form of the DHG equation (1.1):

(
√
m+ Ω)t = −

((
u− γ

α2

)√
m+ Ω

)
x
. (2.11)

The latter equation has also been used for obtaining V̂ as it appears in (2.8), namely,
for replacing the time derivative

(√
m+ Ω

)
t
by the r.h.s. of (2.11).

Summarizing, equations (2.5) and (2.7) constitute the Lax pair of type (2.2) with
Q(x, t, k) = ikp(x, t, k), where p is given by (2.9).

In what follows we will determine solutions of (2.2) having well-controlled behavior
as functions of the spectral parameter k for large values of k. For this purpose, introduce

˜̃Φ = Φ̂eQ (2.12)

and think about ˜̃Φ as a 2× 2 matrix. Then (2.2) can be rewritten as



˜̃Φx + [Qx, ˜̃Φ] = Û

˜̃Φ,
˜̃Φt + [Qt, ˜̃Φ] = V̂

˜̃Φ,
(2.13)

where [·, ·] stands for the matrix commutator. Now determine the particular (Jost)
solutions ˜̃Φ±(x, t) of (2.13) as the solutions of the associated Volterra integral equations:

˜̃Φ±(x, t, k) = I +
x∫

±∞

eQ(y,t,k)−Q(x,t,k)Û(y, t, k)˜̃Φ±(y, t, k)eQ(x,t,k)−Q(y,t,k)dy, (2.14)

or, taking into account the definition of Q,

˜̃Φ+(x, t, k) = I −
∞∫

x

e
ik

y∫
x

√
m+Ωdξσ3

Û(y, t, k) ˜̃Φ+(y, t, k)e
−ik

y∫
x

√
m+Ωdξσ3

dy, (2.15)

˜̃Φ−(x, t, k) = I +
x∫

−∞

e

−ik
x∫
y

√
m+Ωdξσ3

Û(y, t, k)˜̃Φ−(y, t, k)e
ik

x∫
y

√
m+Ωdξσ3

dy (2.16)

(I is the identity matrix).
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Since equations (2.15) have the same form as in the case of the Camassa-Holm
equation, see [6, 8], the analytic properties of ˜̃Φ±(x, t) are also the same; they follow
from the analysis of the Neumann series for the solutions of (2.15) and the symmetries

˜̃Φ±( · , · , k̄) = ˜̃Φ±( · , · ,−k) =
(

0 1
1 0

)
˜̃Φ±( · , · , k)

(
0 1
1 0

)
, (2.17)

which are due to the symmetries of the coefficient matrix

Û( · , · , k̄) = Û( · , · ,−k) =
(

0 1
1 0

)
Û( · , · , k)

(
0 1
1 0

)
(2.18)

(overline means complex conjugation), and we just list them below. We denote µ(1)

and µ(2) the columns of a 2× 2 matrix µ =
(
µ(1) µ(2)). Then for all (x, t):

— det ˜̃Φ± ≡ 1;

— ˜̃Φ
(1)

− and ˜̃Φ
(2)

+ are analytic in {k| Im k > 0 and continuous in {k| Im k ≥ 0, k 6= 0};

— ˜̃Φ
(1)

+ and ˜̃Φ
(2)

− are analytic in {k| Im k < 0 and continuous in {k| Im k ≤ 0, k 6= 0};
— as k →∞ in {k| Im k ≥ 0},

(
˜̃Φ

(1)

−
˜̃Φ

(2)

+

)
→ I;

— as k →∞ in {k| Im k ≤ 0},
(
˜̃Φ

(1)

+
˜̃Φ

(2)

−

)
→ I;

— as k → 0,

˜̃Φ± = α±(x, t)
ik

(
−1 −1
1 1

)
+
(
ν±1 ν±2
ν±2 ν±1

)
+O(k) with α± ∈ R and ν±j ∈ R (2.19)

(notice that matrix
(
−1 −1

1 1

)
involved in Û is nilpotent:

(
−1 −1

1 1

)(
−1 −1

1 1

)
= 0).

Again as in the case of the CH equation, one introduces the scattering matrix s(k)
(independent of (x, t)) by

˜̃Φ+(x, t, k) = ˜̃Φ−(x, t, k)e−ikp(x,t,k)σ3s(k)eikp(x,t,k)σ3 , k ∈ R, k 6= 0, (2.20)

which, due to the symmetries (2.18), can be written in terms of two scalar spectral
functions, a(k) and b(k):

s(k) =
(
a(k) b(k)
b(k) a(k)

)
, k ∈ R, (2.21)

such that a(k) = a(−k) and b(k) = b(−k). The spectral functions have the following
properties [8]:
— a(k) and b(k) are determined by u(x, 0) through the solutions ˜̃Φ±(x, 0) of equations

(2.15);
— a(k) is analytic in {k| Im k > 0} and continuous in {k| Im k ≥ 0, k 6= 0}; moreover,

a(k)→ 1 as k →∞;
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— b(k) is continuous for k ∈ R, k 6= 0 and b(k)→ 0 as |k| → ∞;
— as k → 0, a(k) = α0

ik +O(1) and b(k) = −α0
ik +O(1) with α0 ∈ R;

— |a(k)|2 − |b(k)|2 = 1 for k ∈ R, k 6= 0;
— let {kj}N1 be the set of zeros of a(k): a(kj) = 0. Then N < ∞ and the zeros are

simple with da
dk (kj) ∈ iR; moreover, kj = iνj with 0 < νj <

1
2α
√

Ω for all 1 ≤ j ≤ N ;
and the eigenvectors are related by

˜̃Φ
(1)

− (x, t, iνj) = κje−2νjp(x,t,iνj) ˜̃Φ
(2)

+ (x, t, iνj) (2.22)

with κj ∈ R.
Notice that the case α0 6= 0 is generic. On the other hand, in the non-generic case

α0 = 0, i.e., when limk→0 a(k) = a0 and limk→0 b(k) = b0 are finite (then a0 ∈ R,
b0 ∈ R, and a2

0 = 1 + b20), (2.20) implies that α+(x, t) and α−(x, t) in (2.19) are related
by

α−(x, t) = (a0 − b0)α+(x, t). (2.23)

3. THE RIEMANN-HILBERT PROBLEM

The analytic properties of ˜̃Φ± stated above allow rewriting the scattering relation
(2.20) as a jump relation for a piece-wise meromorphic (w.r.t. k), 2× 2-valued function
(depending on x and t as parameters). Indeed, define M(x, t, k) by

M(x, t, k) =





(
˜̃Φ

(1)

− (x,t,k)
a(k)

˜̃Φ
(2)

+ (x, t, k)

)
, Im k > 0,

(
˜̃Φ

(1)

+ (x, t, k)
˜̃Φ

(2)

− (x,t,k)
a(k)

)
, Im k < 0.

(3.1)

Define r(k) := b(k)/a(k) for k ∈ R. Then the limiting values M±(x, t, k), k ∈ R of M
as k is approached from the domains ± Im k > 0 are related as follows:

M−(x, t, k) = M+(x, t, k)e−ikp(x,t,k)σ3J0(k)eikp(x,t,k)σ3 , k ∈ R, (3.2)

where
J0(k) =

(
1 −r(k)

r(k) 1− |r(k)|2
)
. (3.3)

Taking into account the properties of ˜̃Φ± and s(k), as well as (2.23), M(x, t, k)
satisfies the following properties:
— detM ≡ 1;
— M → I as k →∞;
— M = α+(x,t)

ik

(
−c −1
c 1

)
+O(1) as k → 0 in Im k ≥ 0, where

c =
{

0, if limk→0 ka(k) 6= 0,
1− b0

a0
≡ 1− r(0), if a(k) = a0 +O(k) as k → 0 (then a0 6= 0)

(thus c = 1− r(0) in all cases);
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—
M(·, ·, k̄) = M(·, ·,−k) =

(
0 1
1 0

)
M(·, ·, k)

(
0 1
1 0

)
(3.4)

— M (1) has poles at the zeros kj = iνj of a(k) (in {k| Im k > 0}) and M (2) has poles
at at kj = −iνj (in {k| Im k < 0}), j = 1, 2, . . . , N , where the following residue
conditions are satisfied:

Resk=iνj M
(1)(x, t, k) = iγje

−2νjp(x,t,iνj)M (2)(x, t, iνj),
Resk=−iνj M

(2)(x, t, k) = −iγje−2νjp(x,t,iνj)M (1)(x, t,−iνj)
(3.5)

with γj = −i κj
(da/dk)(iνj) ∈ R.

The idea of the Riemann-Hilbert problem approach in the inverse scattering method
consists in considering the jump relation (3.2) complemented by the normalization
condition M → I as k →∞, by the residue conditions and by the structural condition
at k = 0 as the factorization problem of finding M(x, t, k) (and, consequently, u(x, t))
from the jump matrix in (3.2) and the other “defects of analyticity” of M mentioned
above. As in the case of the CH equation, when realizing this idea, one faces two
problems: (i) the determination of the jump matrix, which is e−ikpJ0(k)eikp, involves
not only the objects uniquely determined by the initial data u(x, 0) (the functions
a(k) and b(k) involved in J0(k) and the constants involved in the residue conditions),
but it also involves p = p(x, t, k), which is obviously not determined by u(x, 0) (it
involves m(x, t) for t ≥ 0); (ii) even if p in (3.2) were prescribed, the solution of the
factorization problem described above would not be unique, since the condition at
k = 0 is structural only: c is determined by the initial data and thus is prescribed
in the framework of the Cauchy problem, but α+(x, t) is not.

Similarly to the CH equation, item (i) can be resolved by introducing a new spatial
variable dictated by the form of p(x, t) (2.9):

y(x, t) =
√

Ωx−
∞∫

x

(
√
m(ξ, t) + Ω−

√
Ω)dξ. (3.6)

Then, in terms of the parameters y and t,

p̂(y, t, k) = p(x(y, t), t, k) = y −
(

2Ω 3
2

1 + 4α2Ωk2 −
γΩ 1

2

α2

)
t, (3.7)

and the jump matrix becomes explicit in variables y and t:

J(y, t, k) = e−ikp̂(y,t,k)J0(k)eikp̂(y,t,k). (3.8)

Accordingly, the residue conditions (3.5) become also explicit in this scale. Namely,
introducing M̂(y, t; k) := M(x(y, t), t; k), the residue conditions have the form

Resk=iνj M̂
(1)(y, t, k) = iγje

−2νj p̂(y,t,iνj)M̂ (2)(y, t, iνj),
Resk=−iνj M̂

(2)(y, t, k) = −iγje−2νj p̂(y,t,iνj)M̂ (1)(y, t,−iνj)
(3.9)
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whereas the jump conditions become

M̂−(y, t, k) = M̂+(y, t, k)J(y, t, k), k ∈ R. (3.10)

Recall that the jump and residue conditions for M̂(y, t; k) were obtained above
assuming that there exists a solution u(x, t) of the DGH equation decaying to 0 as
|x| → ∞ for any fixed t > 0. Now our goal is to show that u(x, t) can be recovered in
terms of M̂(y, t; k), which is considered as a unique solution of a factorization problem
of the Riemann-Hilbert (RH) type, whose data are uniquely determined by u(x, 0).
According to above, given u(x, 0), −∞ < x <∞, we can determine the spectral data
{r(k), k ∈ R; {νj , γj}N1 } via the solution of the integral equations (2.15) considered
for t = 0. Then, the factorization problem is as follows: given {r(k), k ∈ R; {νj , γj}N1 },
find a piece-wise meromorphic function M̂(y, t; k) satisfying (i) the jump conditions
(3.10); (ii) the residue conditions (3.9); (iii) the normalization condition M̂(y, t, k)→ I
as k →∞; (iv) the structural condition

M̂(y, t, k) = α̂+(y, t)
ik

(
−c −1
c 1

)
+O(1), k → 0, Im k ≥ 0, (3.11)

where α+(y, t) is not specified.
As we have already mentioned above, since α+ in condition (iv) is not specified,

the solution of this RH problem is not unique. In order to have uniqueness, we add
another structural condition, which, at the same time, will give simple means to recover
u(x, t) from M̂(y, t; k) evaluated at a particular value of k. Similarly to the case of the
CH equation, this condition comes from the fact that for η(k) = 0, equation (2.1a)
becomes independent of m(x, t).

In order to have a good control of solutions of the Lax pair equations at k = ± i
2α
√

Ω
(which corresponds to η = 0), we introduce another transformation of the original Lax

pair (2.1). Introduce Φ̃0 = P0Φ, where P0 = 1
2

(
1 − 1

ik
√

Ω
1 1

ik
√

Ω

)
. Then (2.1) reduces to

Φ̃0x + ik
√

Ωσ3Φ̃0 = U0Φ̃0,

Φ̃0t + ik
√

Ω
2α2

(
1

η(k) + 2γ
)
σ3Φ̃0 = V0Φ̃0, (3.12)

where

U0 = η(k)m
2ik
√

Ω

(
−1 −1
1 1

)
,

V0 = ux
2

(
0 1
1 0

)
+ uik

√
Ωσ3 + 1

2

(
1

2α2

(
1
η

+ 2γ
)
− u
)
×

×
(
ik
√

Ω− 1
4ikα2

√
Ω
− η(m+ Ω)

ik
√

Ω

)(
−1 −1
1 1

)

(notice that U0 → 0 and V0 → 0 as |x| → ∞). Consequently, introducing ˜̃Φ0 by
˜̃Φ0 = Φ̃0e

(
ik
√

Ωx+ ik
√

Ω
2α2 ( 1

η+2γ)t
)
σ3 (3.13)
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reduces (3.12) to the Lax pair in the commutator form:

˜̃Φ0x + ik
√

Ω[σ3,
˜̃Φ0] = U0

˜̃Φ0,

˜̃Φ0t + ik
√

Ω
2α2

(
1
η

+ 2γ
)

[σ3,
˜̃Φ0] = V0

˜̃Φ0. (3.14)

The Jost solutions ˜̃Φ0± to (3.14) are determined as the solutions of the integral
equations

˜̃Φ0±(x, t, k) = I +
x∫

±∞

e−ik
√

Ω(x−y)σ3U0
˜̃Φ0±(x, t, k)eik

√
Ω(x−y)σ3dy. (3.15)

Now, since U0 ≡ 0 at k = ± i
2α
√

Ω (at η = 0), we have an important property:

˜̃Φ0±

(
x, t,± i

2α
√

Ω

)
≡ I (3.16)

for all x and t.
Further, we notice that ˜̃Φ± and ˜̃Φ0±, being related to the same system of equations

(2.1), are related as

˜̃Φ±(x, t, k)

= P (k)D(x, t)(P0)−1(k) ˜̃Φ0±(x, t, k)e−
(
ik
√

Ωx+ ik
√

Ω
2α2 ( 1

η+2γ)t
)
σ3C±(k)eQ(x,t,k),

(3.17)

where C±(k) are some matrices independent of x and t. Passing to the limits x→ ±∞
determines C±(k):

C+(k) = 1
4
√

Ω
I, C−(k) = 1

4
√

Ω
e

ik

∞∫
−∞

(
√
m+Ω−

√
Ω)dξσ3

.

Calculate F := P (k)D(x, t)(P0)−1(k):

F = 1
2

(
q +
√

Ωq−1 q −
√

Ωq−1

q −
√

Ωq−1 q +
√

Ωq−1

)
, (3.18)

where q := (m+ Ω) 1
4 . Evaluating (3.17) at k = i

2α
√

Ω and using (3.16) we have

˜̃Φ
(1)

−

(
x, t,

i

2α
√

Ω

)
= 1

4
√

Ω
F (1)e

− 1
2α
√

Ω

x∫
−∞

(
√
m+Ω−

√
Ω)dξ

,

˜̃Φ
(2)

+

(
x, t,

i

2α
√

Ω

)
= 1

4
√

Ω
F (2)e

1
2α
√

Ω

∞∫
x

(
√
m+Ω−

√
Ω)dξ

.

(3.19)
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Then, calculating

a

(
i

2α
√

Ω

)
= det

(
˜̃Φ

(1)

−
(
x, t, i

2α
√

Ω

) ˜̃Φ
(2)

+

(
x, t, i

2α
√

Ω

))

= e

− 1
2α
√

Ω

∞∫
−∞

(
√
m+Ω−

√
Ω)dξ

(3.20)

and substituting this and (3.19) into (3.1) evaluated at k = i
2α
√

Ω , we have

M

(
x, t,

i

2α
√

Ω

)
= 1

4
√

Ω
F (x, t)



e

1
2α
√

Ω

∞∫
x

(
√
m+Ω−

√
Ω)dξ

0

0 e
− 1

2α
√

Ω

∞∫
x

(
√
m+Ω−

√
Ω)dξ


 .

(3.21)
Relation (3.21) is important from two points of view: first, it provides a structural

condition for the Riemann-Hilbert problem needed to guarantee the uniqueness of its
solution; second, it gives means to express, parametrically, the solution u(x, t) of the
Cauchy problem (1.6), (1.7) in terms of the solution of the RH problem.

Indeed, in view of (3.18), (3.21) suggests the structural condition for M̂(y, t, i
2α
√

Ω )
in the form:

M̂

(
y, t,

i

2α
√

Ω

)
= 1

2

(
q̃ + q̃−1 q̃ − q̃−1

q̃ − q̃−1 q̃ + q̃−1

)(
f 0
0 f−1

)
, (3.22)

where q̃(y, t) > 0 and f(y, t) > 0 are not specified (in the framework of the RH problem
for M̂).
Proposition 3.1. Consider the RH problem: find a piece-wise meromorphic, 2× 2
function M̂(y, t, k) satisfying: the jump condition (3.10) (where the jump J(y, t, k) as
in (3.8) with (3.7) and (3.3) with given r(k)), the residue conditions (3.9) (with given
{νj , γj}), the normalization condition M̂ → I as k → ∞, the symmetry condition
(3.4), the structural condition at k = 0 (3.11) (where α̂(y, t) is not specified), and the
structural condition at k = i

2α
√

Ω (3.22) (where q̃(y, t) > 0 and f(y, t) > 0 are not
specified). Then the solution of this RH problem, if exists, is unique.
Proof. First, notice that if M̂ is a solution of the RH problem formulated in Proposi-
tion 3.1, then det M̂ ≡ 1. Indeed, the conditions on M̂ imply that det M̂ has no jump
across R, has no singularities at {iνj}, and approaches 1 as k →∞; then, (3.11) and
the Liouville theorem imply that det M̂ = 1 + β

ik with some β; finally, the symmetry
(3.4) yields β ≡ 0 and thus det M̂ ≡ 1.

Moreover, from det M̂ ≡ 1 it follows that the matrix n = {nij}i,j=1,2 in

M̂(y, t, k) = α̂+(y, t)
ik

(
−c −1
c 1

)
+
(
n11 n12
n21 n22

)
+O(k), k → 0, Im k ≥ 0, (3.23)

satisfies the condition
n11 + n21 = c(n12 + n22). (3.24)
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Now assume that there are two solutions to the RH problem, M̂1 and M̂2. Define
N := M̂1(M̂2)−1. Then the conditions on M̂ imply that N has no jump and can have
the only singularity at k = 0, which, due to (3.24), has the form

N = φ

ik

(
−1 −1
1 1

)
+O(1) (3.25)

with some scalar function φ(y, t). Then, by the Liouville theorem,

N = I + φ

ik

(
−1 −1
1 1

)

and thus
M̂1(y, t, k) =

(
I + φ(y, t)

ik

(
−1 −1
1 1

))
M̂2(y, t, k).

Now the observation that the multiplication from the left by N preserves the structure
(3.22) only if φ ≡ 0 completes the proof.
Remark 3.2. In the formulation of the RH problem, the global symmetry condition
(3.4) and the structural condition (3.11) can be replaced by the local symmetry
condition (at k = 0):

M̂(k) = α̂+(y, t)
ik

(
−c −1
c 1

)
+
(
n11 n12
n21 n22

)
+O(k), k → 0, Im k > 0,

M̂(k) = α̂+(y, t)
ik

(
−1 −c
1 c

)
+
(
n22 n21
n12 n11

)
+O(k), k → 0, Im k < 0.

Then the global symmetry condition will follow taking into account the symmetry
of type (2.18) of the jump matrix J .

Assuming the existence of the solution u(x, t) of the Cauchy problem (1.6), (1.7),
the existence of a solution to the RH problem in Proposition 3.1 follows by construction.
On the other hand, assuming that the solution of the RH M̂(y, t, k) is found and
evaluated at k = i

2α
√

Ω , relations (3.21) and (3.22) imply that the solution u(x, t) of
the Cauchy problem (1.6), (1.7) can be expressed, in a parametric form, in terms
of M̂ .
Theorem 3.3. Let u0(x) satisfy assumptions made for the Cauchy problem (1.6), (1.7)
for the DGH equation. Let {r(k), k ∈ R; c; {νj , γj}N1 } be the spectral data determined
by u0(x), and let M̂(y, t; k) be the solution of the associated RH problem form Proposi-
tion 3.1. Then, by evaluating M̂ at k = i

2α
√

Ω we get the parametric representation for
the solution u(x, t) of the Cauchy problem (1.6), (1.7):

u(x, t) = û(y(x, t), t)
with

x(y, t) = 2α log f(y, t) + y√
Ω
, (3.26)

û(y, t) = 2α ∂
∂t

log f(y, t)− 2γ
√

Ω
α

∂

∂y
log f(y, t), (3.27)
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where f comes from (3.22):

f2(y, t) :=
µ̂1(y, t, i

2α
√

Ω )
µ̂2(y, t, i

2α
√

Ω )
, (3.28)

µ̂1(y, t) := M̂11(y, t, i

2α
√

Ω
) + M̂21(y, t, i

2α
√

Ω
), (3.29)

µ̂2(y, t) := M̂12(y, t, i

2α
√

Ω
) + M̂22(y, t, i

2α
√

Ω
). (3.30)

Indeed, comparing (3.21) and (3.22) it follows that

f(y(x, t), t) = e

1
2α
√

Ω

∞∫
x

(
√
m+Ω−

√
Ω)dξ

,

which, taking into account (3.6), implies (3.26). Then (3.27) follows from (2.11).
Remark 3.4. Eigenfunctions associated with the Lax pair equations (2.13) and (3.14)
via integral Fredholm equations of type

Ψ(x, t, k)

= I +
(x,t)∫

(x∗,t∗)

eQ(ξ,t;z)−Q(x,τ,k)
(
ÛΨ(ξ, τ, k)dξ + V̂Ψ(ξ, τ, k)dτ

)
eQ(x,t,k)−Q(ξ,τ,k)

(3.31)

with an appropriate choice of (x∗, t∗) (as (0, 0), (0,∞), and (∞, 0)) allows formulating
a RH problem suitable for analyzing initial boundary value (or half-line) problems
following the procedure presented in [9] in the case of the CH equation.

4. MATRIX VERSUS VECTOR RH PROBLEM.
DEDUCING NONLINEAR EQUATIONS FROM THE MATRIX RH PROBLEM

In the inverse scattering formalism for the Camassa-Holm equation, similarly to the
Korteweg-de Vries equation, vector RH problems are more habitual. In the case of the
DGH equation, the row vector RH problem is as follows: given {r(k), k ∈ R; {νj , γj}N1 }
find a 2-vector function µ̂(y, t, k) = (µ̂1 µ̂2) satisfying the following conditions:
— jump condition (3.10) in the form

µ̂−(y, t, k) = µ̂+(y, t, k)J(y, t, k), k ∈ R, (4.1)

— residue conditions (3.9),
— normalization condition µ̂→ (1 1) as k →∞,
— symmetry condition

µ̂(−k) = µ̂(k)
(

0 1
1 0

)
. (4.2)
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Since the RH problem above has the same structure as in the case of the KdV
equation, its unique solvability follows from the “vanishing lemma” associated with
the one-dimensional Schrödinger operator (see, e.g., [3]) stating that the associated
homogeneous RH problem (with the normalization condition µ̂ → (0 0) as k → ∞)
has the trivial solution only.

Provided the solution µ̂(y, t, k) to the vector RH problem satisfies the condition

µ̂j

(
y, t,

i

2α
√

Ω

)
> 0, j = 1, 2, (4.3)

the solution of the DGH equation can be represented by (3.26), (3.27), where f is
given by (3.28).

Notice that given the solution M̂ of the matrix RH problem, the solution of the
vector RH problem is obviously µ̂ = (1 1)M̂ . Conversely, the following proposition
holds true.

Proposition 4.1. Given the solution µ̂ of the vector RH problem satisfying (4.3), the
solution M̂ of the matrix RH problem formulated in Proposition 3.1 can be constructed
as follows.

— Evaluate µ̂ at k = i
2α
√

Ω and determine q̃(y, t) and f(y, t) by

f(y, t) =



µ̂1

(
y, t, i

2α
√

Ω

)

µ̂2

(
y, t, i

2α
√

Ω

)




1
2

, q̃(y, t) =
(
µ̂1

(
y, t,

i

2α
√

Ω

)
µ̂2

(
y, t,

i

2α
√

Ω

)) 1
2

;

— Determine M̂ by

M̂(k) =




µ̂1 − 1
2ik q̃

(
µ̂1
q̃

)

y

− 1
2ik q̃

(
µ̂2
q̃

)

y

1
2ik q̃

(
µ̂1
q̃

)

y

µ̂2 + 1
2ik q̃

(
µ̂2
q̃

)

y




(4.4)

(subscript y denotes the derivative).

Indeed, the jump, residue, symmetry, and normalization conditions for M̂ obviously
follow from the respective conditions for µ̂. Then, as in the proof of Proposition 3.1,
we have det M̂ ≡ 1. On the other hand, evaluating det M̂(k) using (4.4) at k = i

2α
√

Ω
and equating the result to 1 gives

q̃2
(

1 + 2α
√

Ωfy
f

)
= 1. (4.5)

Using (4.5) in evaluating (4.4) at k = i
2α
√

Ω we arrive at the structure (3.22). Finally,
from (4.1) at k = 0 and (4.2) it follows that µ̂1(0) = (1 − r̄(0))µ̂2(0) and thus the
structural condition (3.11) holds with c = 1− r̄(0) = 1− r(0).
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An advantage of the vector version of the RH problem is that it does not involve
a structural condition at the singular (in the matrix case) point k = 0: indeed, due
to a specific matrix structure of this singularity, the multiplication by (1 1) from
the left cancels the singularity. On the other hand, the matrix formulation has the
advantage that it allows establishing that a function constructed from a solution of
the respective matrix RH problem, where the spectral data are not apriori assumed to
be generated by a solution of the associated nonlinear equation, indeed satisfy this
nonlinear equation. This can be done by constructing Û and V̂ involved in the Lax
pair (zero curvature) representation

Ψy = ÛΨ, Ψt = V̂Ψ.

Then the compatibility relation Ût − V̂y + [Û , V̂ ] = 0 reduces to a system of equations
(relating the values of M̂ at the dedicated points), that can be shown to be equivalent
to the nonlinear equation in question.

For the sake of simplicity, let us illustrate this scheme in the case of the CH equation
(1.2) with ω = 1 (to which the DGH equation can be reduced; see Introduction).
Assuming that M̂ is a solution of the RH problem with p̂(y, t, k) = y − 2

4k2+1 t, define
Ψ = M̂eikpσ3 and calculate Û := ΨyΨ−1 and V̂ := ΨyΨ−1 by calculating the main
terms as k → ∞, k → 0 and k → i

2 (their structure is dictated by the structural
conditions for M̂ at these points) and using the Liouville theorem; this gives

Û = −ikσ3 + u∞

(
0 1
1 0

)
+ iβ1

k

(
1 1
−1 −1

)
,

V̂ = ik

4k2 + 1




q̃2 + 1
q̃2 −q̃2 + 1

q̃2

q̃2 − 1
q̃2 −q̃2 − 1

q̃2


+ iβ2

k

(
1 1
−1 −1

)
.

Here q̃ comes from (3.22), u∞ = 2iM̂ (1)
12 , where M̂ (1) comes from the development

M̂ = I + M̂ (1)

k
+O(k−2) as k →∞,

and βj can be expressed in terms of the expansion of M̂ at k = 0. Then the compatibility
condition Ût − V̂y + [Û , V̂ ] = 0 gives a set of equations relating the coefficients
u∞, β1, β2, q̃:

u∞t + 2β2 −
p2
2 = 0,

β1t − β2y − 2β2u∞ = 0,
p2 + 4β1(p1 + p2) = 0,

p1y − 2u∞p2 = 0,
p2y − 2u∞p1 = 0,
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where p1 := q̃2 + 1
q̃2 and p2 := q̃2 − 1

q̃2 . From this system one deduces

u∞ = 1
2

(q̃2)y
q̃2 ; β1 = −1

8
q̃4 − 1
q̃4

and, if one introduces ûy :=
(

1
q̃2

)
t
,

β2 = W

4q̃2 , ûy = Wy,

where
W := q̃4 − 1 +

(
ûy q̃

2)
y
q̃2.

The system
(

1
q̃2

)

t

= uy,

(
û− q4 + 1−

(
ûyq

2)
y
q2
)
y

= 0,

after the change of variable (y, t) 7→ (x, t): xy(y, t) = q̃−2 and the introduction of

m(x, t) := q̃4(y(x, t), t)− 1, u(x, t) := û(y(x, t), t)

reduces to the CH equation in the “conservative law” form:
(√
m+ 1

)
t

=
(
−u
√
m+ 1

)
x
,

(u−m− uxx)x = 0.

5. SOLITONS

In the Riemann-Hilbert variant of the inverse scattering transform method, the pure
soliton solutions comes from the solutions of the RH problem with trivial jump
conditions (J ≡ I) and thus can be obtained by solving the system of linear algebraic
equations generated by the residue conditions.

For instance, the one-soliton solution of the DGH equation, similarly to the case of
the CH equation, can be obtained from the solution (µ̂1 µ̂2) of the vector RH problem
corresponding to J ≡ I, N = 1, k1 = iν with 0 < ν < 1

2α
√

Ω , and γ1 > 0. From
the RH conditions on µ̂ it follows that

(µ̂1(y, t, k) µ̂2(y, t, k)) =
(
k −B(y, t)
k − iν

k +B(y, t)
k + iν

)
(5.1)

with some B. Substituting this into the residue conditions (3.9) gives

B(y, t) = iν
1− g
1 + g

, (5.2)
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where

g(y, t) = exp
{
−2ν

(
y −

(
2Ω 3

2

1− 4α2Ων2 −
γΩ 1

2

α2

)
t− y0

)}
(5.3)

with y0 = 1
2ν log γ1

2ν .
Now, substituting (5.1) with (5.3) and (5.2) into the formulas (3.26)–(3.28) for the

solution of the DGH equation gives the parametric representation for the one-soliton
solution: u(x, t) = û(y(x, t), t), where

û(y, t) = 32α2Ω2ν2

(1− 4α2Ων2)2
g

1 + 2 1+4α2Ων2

1−4α2Ων2 g + g2
, (5.4)

x(y, t) = α log
1 + g 1+2α

√
Ων

1−2α
√

Ων

1 + g 1−2α
√

Ων
1+2α

√
Ων

+ y√
Ω
. (5.5)

Introducing the soliton speed (in the scale (y, t))

v̂s = 2Ω3/2

1− 4α2Ων2 −
γ
√

Ω
α2 (5.6)

and rewriting g as g = eφ with φ = −2ν(y− v̂st− y0), the formula for û takes the form

û(y, t) = 16α2Ω2ν2

1− 4α2Ων2
1

(1− 4α2Ων2) cosh {φ(y, t)}+ 1 + 4α2Ων2 . (5.7)

According to (5.5), the soliton speed in the original scale (x, t) is vs = 2Ω
1−4α2Ων2 − γ

α2 ;
thus the solitons can propagate in the sector x

t > 2Ω− γ
α2 of the (x, t)-plane.

Moreover, similarly to the CH equation, see [5, 7], the Riemann-Hilbert formalism
allows studying in details the long-time asymptotics of the solution of the Cauchy
problem (1.6), (1.7). Particularly, one can show that the solitons dominate the asymp-
totics in the soliton sector x

t > 2Ω − γ
α2 : as t → ∞, the solution approaches the

sum of one-solitons, whose parameters are determined by the parameters involved in
the residue conditions.

Notice that (5.5) implies that

∂x

∂y
(y, t) = 1√

Ω
(1 + g)2

1 + 2 1+4α2Ων2

1−4α2Ων2 g + g2
(5.8)

and thus ∂x
∂y (y, t) > 0 for all y and t provided that g is as in (5.3) (particularly, g > 0

for all y and t) and that 0 < ν < 1
2α
√

Ω . Consequently, the variable change y 7→ x is
smooth and bijective for any fixed t. Therefore, the smooth soliton solution (5.4) in the
variables (y, t) remains smooth in the original variables (x, t) and thus is a classical,
smooth solution of the DGH equation.

Now notice that the considerations in the previous section allows constructing
(local) solutions of the DGH equation starting from a Riemann-Hilbert problem, whose
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data do not necessarily correspond to “good” (smooth, decaying) initial data. Provided
the RH problem is solved, the construction will give a solution of the DGH equation,
that needn’t be a classical solution but solves the DGH equation locally, probably
in a certain week sense (see, e.g., [11] for the case of the short wave limit of the CH
equation).

For example, consider the RH problem with the trivial jump and with the residue
conditions corresponding to N = 1 and k = iν with ν > i

2α
√

Ω . Assume also that the
associated γ1 is negative: γ1 < 0. Then the formulas (5.4), (5.5) with g given by

g(y, t) = − exp
{
−2ν

(
y −

(
2Ω 3

2

1− 4α2Ων2 −
γΩ 1

2

α2

)
t− y0

)}
(5.9)

where y0 = 1
2ν log |γ1|

2ν , still determine a bounded function that solves, locally, the
DGH equation. Notice that û(y, t) in this case, see (5.4), is a smooth function for all y
and t, but the variable change y 7→ x, see (5.5), is singular at a single point corre-
sponding to g = −1, where ∂x

∂y = 0 (which, as it is seen from (5.4), corresponds to the
single maximum of û(y, t)). Therefore, in the original variables (x, t), u(x, t) given by
(5.4), (5.5) with g given by (5.9) has a cusp (with ∂u

∂x =∞) at his maximum and thus
can be called the cuspon solution of the DGH equation.
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