PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Modifications of methods for the fracture analysis from borehole data in application to shale formations

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Systematic joints play an important role in effective fluid conductivity and in the mechanical response of shale reservoirs to hydraulic fracturing. Specific features of joints, such as their strata-bound aspect, and their attitude, commonly normal to bedding, make it necessary to modify standard methods of their analysis from borehole data. Our study, based on borehole core and microresistivity image logs, is adjusted to typical exploration procedure, with vertical boreholes penetrating subhorizontal beds. This simple configuration makes it possible to measure the true height of most joints. We have used joint height as the weighting parameter for the construction of orientation diagrams and for computation of fracture intensity profiles. We also propose here a method for evaluation of fracture orientation error on directly oriented core, show how to distinguish joints present in the scanner record but absent from the core, and how to apply this kind of data filtering to core/log correlation. We also propose to extend the analysis of mineralized joints by using the type and degree of vein cracking in order to better characterize their susceptibility to hydraulic stimulation. Application of the modified methods revealed a stratification of joint distribution which, in some cases, may not be observed due to the scarcity of joint data from boreholes.
Słowa kluczowe
Rocznik
Strony
art. no. 23
Opis fizyczny
Bibliogr. 59 poz., fot., rys., tab., wykr.
Twórcy
autor
  • Polish Geological Institute – National Research Institute, Rakowiecka 4, 00-975 Warszawa, Poland
  • Polish Geological Institute – National Research Institute, Rakowiecka 4, 00-975 Warszawa, Poland
Bibliografia
  • 1. Barthélémy, J.-F., Guiton, M.L.E., Daniel, J.-M., 2009. Estimates of fracture density and uncertainties from well data. International Journal of Rock Mechanics and Mining Sciences, 46: 590-603.
  • 2. Bobek, K., Jarosiński, M., 2018. Parallel structural interpretation of drill cores and microresistivity scanner images from gas-bearing shale (Baltic Basin, Poland). Interpretation, 6: SH25-SH38.
  • 3. Bobek, K., Jarosiński, M., Pachytel, R., 2017. Tectonic structures in shale that you do not include in your reservoir model. Presented at the 51st U.S. Rock Mechanics/Geomechanics Symposium, American Rock Mechanics Association, San Francisco, California. https://www.onepetro.org/conference-paper/ARMA-2017-0079.
  • 4. Boro, H., Rosero, E., Bertotti, G., 2014. Fracture-network analysis of the Latemar Platform (northern Italy): integrating outcrop studies to constrain the hydraulic properties of fractures in reservoir models. Petroleum Geoscience, 20: 79-92.
  • 5. Brown, J., Davis, B., Gawenkar, K., Kumar, A., Li, B., Miller, C.K., Laronga, R., Schlicht, P., 2015. Imaging: getting the picture downhole. Oilfield Review, 27: 4-21.
  • 6. Dershowitz, W., Hermanson, J., Follin, S., Mauldon, M., 2000. Fracture Intensity Measures in 1-D, 2-D, and 3-D at Äspö, Sweden. Presented at the 4th North American Rock Mechanics Symposium, American Rock Mechanics Association, Seattle, Washington. https://www.onepetro.org/conference-paper/ARMA-2000-0849.
  • 7. Dershowitz, W.S., Herda, H.H., 1992. Interpretation of fracture spacing and intensity. Presented at the The 33rd U.S. Symposium on Rock Mechanics (USRMS), American Rock Mechanics Association, Santa Fe, New Mexico. https://www.onepetro.org/conference-paper/ARMA-92-0757.
  • 8. Doblas, M., 1998. Slickenside kinematic indicators. Tectonophysics, 295: 187-197.
  • 9. Engelder, T., Lash, G.G., Uzcátegui, R.S., 2009. Joint sets that enhance production from Middle and Upper Devonian gas shales of the Appalachian Basin. AAPG Bulletin, 93: 857-889.
  • 10. Feldman-Olszewska, A., Roszkowska-Remin, J., 2016. Lithofacies of the Ordovician and Silurian formations prospective for shale gas/oil in the Baltic and Podlasie-Lublin areas (in Polish with English summary). Przegląd Geologiczny, 64: 968-975.
  • 11. Fisher, N.I., Lewis, T., Embleton, B.J.J., 1993. Statistical Analysis of Spherical Data. Cambridge University Press, Cambridge.
  • 12. Fu, P., Johnson, S.M., Carrigan, C.R., 2013. An explicitly coupled hydro-geomechanical model for simulating hydraulic fracturing in arbitrary discrete fracture networks. International Journal for Numerical and Analytical Methods in Geomechanics, 37: 2278-2300.
  • 13. Gale, J.F.W., Laubach, S.E., Olson, J.E., Eichhubl, P., Fall, A., 2014. Natural fractures in shale: a review and new observations. AAPG Bulletin, 98: 2165-2216.
  • 14. Gale, J.F.W., Reed, R.M., Holder, J., 2007. Natural fractures in the Barnett Shale and their importance for hydraulic fracture treatments. AAPG Bulletin, 91: 603-622.
  • 15. Grasselli, G., Lisjak, A., Mahabadi, O.K., Tatone, B.S.A., 2015. Influence of pre-existing discontinuities and bedding planes on hydraulic fracturing initiation. European Journal of Environmental and Civil Engineering, 19: 580-597.
  • 16. Gross, M., Lukas, T.C., Schwans, P., 2009. Application of Mechanical Stratigraphy to the Development of a Fracture-Enhanced Reservoir Model, Polvo Field, Campos Basin, Brazil. Presented at the AAPG Annual Convention, AAPG, Denver, Colo fado. http://www.searchanddiscovery.com/pdfz/documents/2009/ 20080gross/images/gross.pdf. html.
  • 17. Guerriero, V., Dati, F., Giorgioni, M., lannace, A., Mazzoli, S., Vitale, S., 2015. The role of stratabound fractures for fluid migration pathways and storage in well bedded carbonates. Italian Journal of Geosciences, 134: 383-395.
  • 18. Guerriero, V., Mazzoli, S., lannace, A., Vitale, S., Carravetta, A., Strauss, C., 2013. A permeability model for naturally fractured carbonate reservoirs. Marine and Petroleum Geology, 40: 115-134.
  • 19. Gutmanis, J., Oró, L.A., Díez-Canseco, D., Chebbihi, L., Awdal, A., Cook, A., 2018. Fracture analysis of outcrop analogues to support modelling of the subseismic domain in carbonate reservoirs, south-central Pyrenees. Geological Society Special Publications, 459: 139-156.
  • 20. Helgeson, D.E., Aydin, A., 1991. Characteristics of joint propagation across layer interfaces in sedimentary rocks. Journal of Structural Geology, 13: 897-911.
  • 21. Hooker, J.N., Laubach, S.E., Marrett, R., 2013. Fracture-aperture size-frequency, spatial distribution, and growth processes in strata-bounded and non-strata-bounded fractures, Cambrian Mesón Group, NW Argentina. Journal of Structural Geology, 54: 54-71.
  • 22. Jarosiński, M., 2006. Recent tectonic stress field investigations in Poland: a state of the art. Geological Quarterly, 50 (3): 303-321.
  • 23. Johri, M., Zoback, M.D., 2013. The Evolution of Stimulated Reservoir Volume during Hydraulic Stimulation of Shale Gas Formations. Presented at the SPE/AAPG/SEG Unconventional Resources Technology Conference, Unconventional Resources Technology Conference, Denver, Colorado. https://doi.org/10.1190/urtec2013-170.
  • 24. Ladeira, F.L., Price, N.J., 1981. Relationship between fracture spacing and bed thickness. Journal of Structural Geology, 3: 179-183.
  • 25. Lai, J., Wang, G., Wang, S., Cao, J., Li, M., Pang, X., Han, C., Fan, X., Yang, L., He, Z., Qin, Z., 2018. A review on the applications of image logs in structural analysis and sedimentary characterization. Marine and Petroleum Geology, 95: 139-166.
  • 26. Laubach, S.E., Lamarche, J., Gauthier, B.D.M., Dunne, W.M., 2018. Spatial arrangement of faults and opening-mode fractures. Journal of Structural Geology, 108: 2-15.
  • 27. Lerche, I., Narr, W., 1986. Estimating Subsurface Fracture Density in Core: Effects Resulting From Variable Fracture Spacing. SPE Formation Evaluation, 1: 249-258.
  • 28. Li, B., 2014. Natural Fractures in Unconventional Shale Reservoirs in US and their Roles in Well Completion Design and Improving Hydraulic Fracturing Stimulation Efficiency and Production. Presented at the SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers, Amsterdam. https://doi.org/10.2118/170934-MS.
  • 29. Li, L., Lee, S.H., 2008. Efficient field-scale simulation of black oil in a naturally fractured reservoir through discrete fracture networks and homogenized media. SPE Reservoir Evaluation & Engineering, 11: 750-758.
  • 30. Lorenz, J.C., Cooper, S.P., 2020. Applied Concepts in Fractured Reservoirs. John Wiley & Sons, Chirchester.
  • 31. Lorenz, J.C., Cooper, S.P., 2017. Atlas of Natural and Induced Fractures in Core. John Wiley & Sons, Oxford.
  • 32. Mandal, N., Deb, S.K., Khan, D., 1994. Evidence for a non-linear relationship between fracture spacing and layer thickness. Journal of Structural Geology, 16: 1275-1281.
  • 33. Martel, S.J., 1999. Analysis of fracture orientation data from boreholes. Environmental & Engineering Geoscience, 5: 213-233.
  • 34. Massiot, C., Townend, J., Nicol, A., McNamara, D.D., 2017. Statistical methods of fracture characterization using acoustic borehole televiewer log interpretation. Journal of Geophysical Research: Solid Earth, 122: 6836-6852.
  • 35. Narr, W., 1991. Fracture density in the deep subsurface: techniques with application to Point Arguello oil field. AAPG Bullelin, 75: 1300-1323.
  • 36. Narr, W., 1996. Estimating Average Fracture Spacing in Subsurface Rock. AAPG Bulletin, 80: 1565-1585.
  • 37. Nelson, R., 2001. Geologic Analysis of Naturally Fractured Reservoirs, 2nd ed. Elsevier, USA.
  • 38. Nelson, R.A., Lenox, L.C., Ward, B.J., 1987. Oriented core: its use, error and uncertainty. AAPG Bulletin, 71: 357-367.
  • 39. Odling, N.E., 1997. Scaling and connectivity of joint systems in sandstones from western Norway. Journal of Structural Geology, 19: 1257-1271.
  • 40. Odling, N.E., Gillespie, P., Bourgine, B., Castaing, C., Chiles, J.P., Christensen, N.P., Fillion, E., Genter, A., Olsen, C., Thrane, L., Trice, R., Aarseth, E., Walsh, J.J., Watterson, J., 1999. Variations in fracture system geometry and their implications for fluid flow in fractures hydrocarbon reservoirs. Petroleum Geoscience, 5: 373-384.
  • 41. Pachytel, R.W., Jarosinski, M., Bobek, K., 2017. Geomechanical Stratification in a Shale Reservoir and Its Correlation With Natural Fractures: Case From Pomeranian Basin (Poland). Presented at the 51st U.S. Rock Mechanics/Geomechanics Symposium, American Rock Mechanics Association, San Francisco, California. https://www.onepetro.org/conference-paper/ARMA-2017-0077.
  • 42. Peacock, D.C.P., 2006. Predicting variability in joint frequencies from boreholes. Journal of Structural Geology, 28: 353-361.
  • 43. Petrie, E., Jeppson, T., Evans, J., 2012. Predicting rock strength variability across stratigraphic interfaces in caprock lithologies at depth: correlation between outcrop and subsurface. Environmental Geosciences, 19: 125-142.
  • 44. Podhalańska, T., Waksmundzka, M.I., Becker, A., Roszkowska-Remin, J., 2016. Investigation of the prospective areas and stratigraphic horizons of the unconventional hydrocarbon resources in Poland: new results and future research directions (in Polish with English summary). Przegląd Geologiczny, 64: 953-962.
  • 45. Poprawa, P., Šliaupa, S., Stephenson, R., Lazauskien, J., 1999. Late Vendian-Early Paleozoic teclonic evolution of the Baltic Basin: regional tectonic implications from subsidence analysis. Tectonophysics, 314: 219-239.
  • 46. Prioul, R., Jocker, J., 2009. Fracture characterization at multiple scales using borehole images, sonic logs, and walkaround vertical seismic profile. AAPG Bulletin, 93: 1503-1516.
  • 47. Ramsay, J.G., Huber, M.I., 1987. Techniques in Modern Structural Geology. Volume 2: Folds and Fractures. Academic Press, London.
  • 48. Salehi, I.A., Ciezobka, J., 2013. Controlled Hydraulic Fracturing of Naturally Fractured Shales - a Case Study in the Marcellus Shale Examining How to Identify and Exploit Natural Fractures. Presented at the SPE Unconventional Resources Conference-USA, Society of Petroleum Engineers, Woodlands, Texas. https://doi.org/10.2118/164524-MS.
  • 49. Schmitt, D.R., Currie, C.A., Zhang, L., 2012. Crustal stress determination from boreholes and rock cores: Fundamental principles. Tectonophysics, 580: 1-26.
  • 50. Seeburger, D.A., Zoback, M.D., 1982. The distribution of natural fractures and joints at depth in crystalline rock. Journal of Geophysical Research, 87: 5517-5534.
  • 51. Spina, V., Borgomano, J., Nely, G., Shchukina, N., Irving, A., Neumann, C., Neillo, V., 2015. Characterization of the Devonian Kharyaga carbonate platform (Russia): integrated and multiscale approach. AAPG Bulletin, 99: 1771-1799.
  • 52. Taghichian, A., Zaman, M., Devegowda, D., 2014. Stress shadow size and aperture of hydraulic fractures in unconventional shales. Journal of Petroleum Science and Engineering, 124: 209-221.
  • 53. Van Noten, K., Sintubin, M., 2010. Linear to non-linear relationship between vein spacing and layer thickness in centimetre- to decimetre-scale siliciclastic multilayers from the High-Ardenne slate belt (Belgium, Germany). Journal of Structural Geology, 32: 377-391.
  • 54. Watkins, H., Bond, C.E., Healy, D., Butler, R.W.H., 2015. Appraisal of fracture sampling methods and a new workflow to characterise heterogeneous fracture networks at outcrop. Journal of Structural Geology, 72: 67-82.
  • 55. Williams, J.H., Johnson, C.D., 2004. Acoustic and optical borehole-wall imaging for fractured-rock aquifer studies. Journal of Applied Geophysics, Non-Petroleum Applications of Borehole Geophysics, 55: 151-159.
  • 56. Wiprut, D., Zoback, M.D., 2000. Fault reactivation and fluid flow along a previously dormant normal fault in the northern North Sea. Geology, 28: 595-598.
  • 57. Wu, H., Pollard, D., 1995. An experimental study of the relationship between joint spacing and layer thickness. Journal of Structural Geology, 17: 887-905.
  • 58. Zoback, M.H., Kohli, A., Das, I., McClure, M., 2012a. The Importance of Slow Slip on Faults During Hydraulic Fracturing Stimulation of Shale Gas Reservoirs. Presented at the Society of Petroleum Engineers. https://doi.org/10.2118/155476-MS.
  • 59. Zoback, M., Kohli, A., Das, I., McClure, M., 2012b. The Importance of Slow Slip on Faults During Hydraulic Fracturing Stimulation of Shale Gas Reservoirs. Presented at the Society of Petroleum Engineers, Pittsburgh, Pennsylvania. https://doi.org/10.2118/155476-MS.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-863661b7-0c75-41b9-be6c-2d03024d8c97
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.