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Abstract
Fluidized bed boilers have been widely used for many years in energetics but their application in shipbuilding 
has been incidental. The hydrodynamics of a fluidized bed is a complicated issue. If the swaying of a ship on 
a sea wave is taken into account, this issue will be further complicated. The choice of an appropriate mathemat-
ical model is important from the viewpoint of building computer models for the simulation of a fluidized bed 
during disruptions that result from the ship swaying on sea waves. Fluidization is a two-phase flow process, 
which is described by many models such as the homogeneous-slip model or heterogeneous-slide model. The 
most popular models that show two-phase gas-solid or fluid-solid flow are the Euler-Euler and Euler-Lagrange 
models. The paper presents models that describe a ship’s fluidized bed.

Nomenclature

CD – drag force coefficient
d – diameter 
Fd – drag force for a single particle
g – specific gravity force 
Fi – external body force
I – unit tensor
Kgs – momentum exchange coefficient
mp – mass of particles
p – pressure
t – time 
V – volume of particles 
α – volume of phase
ε – porosity of dense
η – dynamic viscosity 
μ – shear viscosity 
ρ – density 
τ – shear stress tensor
υ – velocity 

Subscripts

g – gas
p – particle
s – solid

Introduction

Fluidized bed boilers are being applied in many 
branches of industry, such as pharmaceutical, chem-
ical, mineral-processing industrial, and metallurgy. 
They are also becoming increasingly popular in civil 
engineering; however, boilers with a circulating-flu-
idized bed displace boilers with a bubbling-fluidized 
bed because they have greater energetic efficiency 
and lower emission of nitrogen oxides (NOx) (Bis, 
2010). The phenomenon of fluidization, which in 
fact is a two-phase flow, is a complicated problem. 
A new problem, in the aspect of simulation model-
ing of layer hydrodynamics of a ship fluidized-bed 
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boiler, is consideration of external disturbances such 
as the swaying of a ship that affects the process of 
fluidization. This paper presents mathematical mod-
els describing the process of fluidization that are tak-
en into account in the aspect of selection of the most 
appropriate model that will allow for easy adaptation 
while allowing for consideration of the aforemen-
tioned disturbances.

Mathematical models of two-phase flow

Two-phase flow is the common flow of two 
phases, continuous phase and dispersed phase, 
where continuous phase is a fluid or a gas and dis-
persed phase is the substance of any physical state. 
In the issue considered herein, the continuous phase 
represents gas and the dispersed phase will be repre-
sented by the particles of solid fuel, such as coal or 
solid biomass. A characteristic feature of two-phase 
flow is appearance of the surface of phase separa-
tion. The flow area can be treated like a space that is 
divided into two single-phase subareas by a bound-
ary surface. Each of the individual phases can be for-
mulated into an equation, like for single-phase flow. 
Models formulated in this way belong to the class 
of heterogeneous models (slide models). The sec-
ond group is homogeneous models, in which each 
of components fill the whole volume and lose indi-
vidual features, which means that both phases are 
treated as perfectly mixed and moving with the same 
velocity (slip model).

Commercial software for simulation of flow 
dynamics, called Computational Fluid Dynamic 
(CFD; for example, FLUENT), is used to create two 
types of mathematical models: the Euler-Euler model 
and Euler-Lagrange model. The approach to the sim-
ulation of two-phase flow in models mentioned above 
is different. In the Euler-Euler model, each phase in 
the mathematical approach is considered as continu-
ous and fully interpenetrating, which may be based on 
the Navier-Stokes equation.  Variables from the Eul-
er equation are used in constitutive equations for all 
phases, while in Euler-Lagrange model, the Newton 
motion equation is used for each particle separate-
ly. This approach also takes into account a collision 
model to consider the energy dissipation caused by 
the non-ideal interactions of particles in the dispersed 
phase. The group models based on the Euler equa-
tion can be included in the Granular-Euler model. 
In the next part of the article, the above models will 
be broadly characterized (Huilin, Yurong & Gidas-
pow, 2003; Yang & Renken, 2003; Taghipour, Ellis & 
Wong, 2005; Benzarti, Mhiri & Bourhot, 2012).

Euler-Euler Model

The Euler-Euler Model is the most popular mod-
el in many types of software used for simulations 
and is the preferred model for simulation of a fluid-
ized-bed layer. The basis for building the Euler-Euler 
Model equation is conservation of mass, energy, and 
momentum for each phase (Huilin, Yurong & Gidas-
pow, 2003; Lundberg & Halvorsen, 2008; Benzarti, 
Mhiri & Bourhot, 2012).

The mass conservation equations for the gas 
phase (g) and for solid phase (s) can be represented 
by the formula [14]:
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The momentum conservation equation for both 
phases can be presented as follows:
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where:
α – volume of phase fraction,
ρ – density,
υ – velocity,
p – pressure,
g – specific gravity force,
τ – shear stress tensor.

In adiabatic flows, the equation of energy conser-
vation brings nothing new to the system of conser-
vative equations and therefore is omitted. In many 
works, particular attention is paid to the drag force 
which is represented by the momentum-exchange 
coefficient Kgs. Depending on the model, it is var-
iously formulated. For example, in the model pro-
posed by Gidaspow, which is combination of two 
other models, Wen-Yu and Ergun (Orzechowski, 
1990; Huilin, Yurong & Gidaspow, 2003; Benzarti, 
Mhiri & Bourhot, 2012), it is defined as follows:
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where:
CD – drag force coefficient,
d – diameter,
μ – shear viscosity,
Re – Reynolds number.

For closure of the system of equations that cre-
ates the mathematical model, there are also needed 
constitutive equations that are relations between 
stress-state and strain-state tested material. The 
stress tensor is calculated based on the sum of all 
average values of velocities according to the Navi-
er-Stokes equation (Kozic et al., 2011).

Granular-Euler Model

The Granular-Euler Model is another model from 
the group of mathematical models describing the 
phenomenon of two-phase flow. This model is used 
when the motion of particles is determined by mutu-
al collisions. Collision of particles with the walls is 
also taken into account in this model.

The continuity equation of the granular phase 
(in this case there is no separation on a solid phase 
and gas phase) is represented by equation (9) (Bak-
ker, 2008):

 fssssss m
t
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where: ṁ – mass stream.
The momentum-conservation equation, similar 

to the Euler-Euler Model, looks as follows (Bakker, 
2008):
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term.

The granular-temperature equation – an equation 
implemented in the Granular Model, which is pro-
portional to the kinetic energy of the random motion 
of the particles – looks as follow (Bakker, 2008): 
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where: ss 


:  
 

 – generation of energy by the sol-
id stress tensor; )( ssk    

 
 – diffusion of energy; 

gsss    
 

 – represent the energy exchange among sol-
id phase (ss) and exchange between gas and solid 
phase (gs).

To solve the complete granular-temperature 
equation, Syamlal proposed an algebraic form to 
this equation (Benzarti, Mhiri & Bourhot, 2012). 
He assumed that the energy of the granular phase 
is steady state and dissipates locally, which is why 
convection and diffusion terms can be neglected. 
Equation (11) can be represented as:

     sss IP :0  
 

 (12)

where: γ – dissipation of energy due to inelastic 
collisions.

The basic difference between the momen-
tum-conservation equation in the Euler-Euler Model 
(3, 4) and that of the Granular-Euler Model (10) is 
the presence in the first of them two equations that 
show the momentum-conservation equation sepa-
rately for the gas phase and solid phase, while in the 
Granular-Euler Model there is only a single equa-
tion; another difference is the presence of a momen-
tum-exchange coefficient mentioned above. In the 
second of them an interaction is described between 
phases that is compared to zero, with present balance 
between states.  This model is based on the kinetic 
theory of gases, which makes it difficult to apply to 
the computer simulations because there is needed 
a heat-exchange analysis and mass-exchange analy-
sis between phases.

Euler-Lagrange Model

The Euler-Lagrange Model approaches the prob-
lem differently than the Euler-Euler Model. For the 
solid phase, there are equations of energy balance 
while the dispersed phase is treated like a set of 
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single particles, in which each of them is described 
using Lagrange’s variables – variables of motion 
for the single particle. This theory mainly concerns 
hydrodynamics of molecules and it can be applied 
where is a small quantity of particles (Di Felice & 
Kehlenbeck, 2000; Kudela & Lewtak, 2002; Huilin, 
Yurong & Gidaspow, 2003; Lundberg & Halvorsen, 
2008; Benzarti, Mhiri & Bourhot, 2012). Accept-
ing the assumptions of the Euler-Lagrange Model 
that each particle is treated separately and for each 
of them there is a determined trajectory of motion 
using the Newton motion equation, the equation of 
Euler-Lagrange Model can be represented as follows 
(Sobieski, 2009):

For the continuous phase:
• continuity equation:
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• momentum equation:
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For the dispersed phase:
To describe the dispersed phase using the 

Lagrange approach, it is necessary to take into 
account the huge quantity of particles and treat them 
like a set of particles described using a series of dif-
ferential equations:
• location of particle:
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• velocity of particle:
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• angular velocity of particle:
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where:
ε – porosity of fraction,
V – volume,
Fi – external body force,
m – mass.

In the Euler-Lagrange Model, the equation of 
motion is solved for each particle separately, which 
requires considerable computing power. During 
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equation solving, also considered is the energy 
dissipation caused by the non-ideal interactions of 
particles.

Foscolo-Gibilaro and Richardson-Zaki 
Model

Analyzing the behavior of the fluidized bed also 
allows for the Foscolo and Gibilaro Model to be 
used (Joseph, 1990; Lattieri et al., 2001; Lundberg 
& Halvorsen, 2008). In this model, it is assumed that 
the layer is built of two continuous ones penetrat-
ing each other from the gas phase and phase of solid 
particles. Both phases are treated as incompressible.

The conservation equations in the Foscolo-Gib-
ilaro Model, written as one dimensional, are repre-
sented as (Joseph, 1990):
• mass conservation equation:
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• momentum conservation equation:
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where FI is the strength of interaction between the 
fluid and particle. Force is the sum of the contri-
bution: drag force and buoyancy force for a single 
particle.

Buoyancy force in this model looks as follows:
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where: υ = υpεn; υp – terminal fall velocity.
Coefficient n depends on the Reynolds number 

and in correlation proposed by Richardson-Zaki: 
n = n(Ret):
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Conclusions

Mathematical modeling of fluidized-bed layers is 
a complicated issue, due to complexity of the phe-
nomenon of two-phase flow. The choice of math-
ematical models needs to be fitted to the assumed 
simulation conditions, such as the diameter of parti-
cles and the concentration of the material.

For the purposes of simulation of the fluid-
ized-bed boiler, where there are additional forces 
caused by a swaying ship on a wave, it is recom-
mended to simplify the model while maintaining the 
highest accuracy. If in the model, forces acting on 
other particles are not considered, the best model 
will be the Euler-Euler Model; this is a model with 
the widest range of applications. The model treats 
each of the phases separately, like a continuous 
phase, facilitating work and in preparing simula-
tion. Another selection criterion is the adoption of an 
appropriate model for the description of the momen-
tum-exchange coefficient. In this case, there are also 
several possibilities that can be distinguished by the 
model proposed by Gidaspow, or models by Sin-
clair or Syamlal-O’Brien, not described here. These 
models differ from each other in coefficients that are 
taken into account, where dividing is based on the 
volume fraction of the fluidized column that is filled 
with gas. The Gidaspow Model is a model that is 
the best in the case of a simulation of dense fluid-
ized-bed layers. The Sinclair Model is a model that 
is applicable when the simulation concerns linear 
pneumatic transport (Bakker, 2008).

Homogeneous models may be especially useful 
where the motion of a single particle, in a two-phase 
mixture, is not analyzed and the most important 
parameter to be determined is drag forces of the mix-
ture. In this study, we used averaged values of the 
continuous phase and dispersed phase that reduces 
the complexity of the model and calculations.
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