PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of particle size on reduction kinetics of hematite ore in suspension roaster

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Suspension magnetization roasting followed by magnetic separation is an innovative and effective way to recover iron from refractory iron ores, and the particle size of the ore greatly affects the roasting index. To identify the effect of particle size on the reduction kinetics for the transformation of hematite to magnetite, a high-purity hematite ore with different size fractions were isothermally reduced using a suspension roaster. The pure hematite ore was divided into -1000+500 µm, -500+150 µm, -150+74 µm, -74+37 µm and -37 µm size fractions, while the gas mixture of CO and CO2 with a volume ratio of 1:4 was used as reductant. The results showed that the most suitable mechanism function for the reduction of -37 µm size fraction hematite ore is the Avrami-Erofeev model. In the case of -500+37 µm size fraction, the reduction process can be described by first-order chemical reaction model. For -1000+500 µm size fraction, the reduction of hematite ore is restricted by the second-order chemical reaction. In addition, scanning electron microscopy (SEM) analysis results demonstrated that the transformation of hematite particles to magnetite is in accordance with the characteristics of shrinking core model. The phase transformation primarily occurs at the edge of hematite particles and then develop towards the inner side of particles. The findings of this paper provide a theoretical basis for the development and utilization of refractory hematite ore via suspension magnetization roasting technology.
Rocznik
Strony
449--459
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wz.
Twórcy
autor
  • College of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
autor
  • College of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
autor
  • College of Mining Engineering, North China University of Science and Technology, Tangshan 063210, China
autor
  • College of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China
Bibliografia
  • CHUN, T. J., ZHU D. Q., PAN J., 2015. Simultaneously roasting and magnetic separation to treat low grade siderite and hematite ores. Min. Proce. Ext. Met. Rev. 36, 223-226.
  • ET-TABIRON, M., DUPRE, B., GLEITZER, C., 1988. Hematite single crystal reduction into magnetite with CO-CO2. Metall. Mater. Trans. B 19, 311-317.
  • FEILMAYR, C., THURNHOFER, A., WINTER, F., 2004. Reduction behavior of hematite to magnetite under fluidized bed conditions. ISIJ Int. 44, 1125-1133.
  • GAO, P., LI, G. F., HAN, Y. X., SUN, Y. S., 2016. Reaction behavior of phosphorus in coal-based reduction of an oolitic hematite ore and pre-dephosphorization of reduced iron. Metals 6, 82.
  • GAO, P., Tang, Z., HAN, Y., LI, E., ZHANG, X., 2019. A pressure drop model of u-typed reduction chamber for iron ore suspension roasting. Powder Technol. 343, 255-261.
  • HAN, Y. X., LI, G. F., GAO, P., SUN, Y. S., 2017. Reduction behaviour of apatite in oolitic haematite ore using coal as a reductant. Ironmak. Steelmak. 44, 287-293.
  • HOU, B. L., ZHANG, H. Y., LI, H. Z., 2012. Study on kinetics of iron oxide reduction by hydrogen. Chinese J. Chem. Eng. 20, 10-17.
  • JANG, K., NUNNA, V., HAPUGODA, S., NGUYEN, A., BRUCKARD, W., 2014. Chemical and mineral transformation of a low grade goethite ore by dehydroxylation, reduction roasting and magnetic separation. Miner. Eng. 60, 14-22.
  • LI, C., SUN, H., BAI, J., LI, L., 2010. Innovative methodology for comprehensive utilization of iron ore tailings: part 1. The recovery of iron from iron ore tailings using magnetic separation after magnetizing roasting. J. Hazard. Mater. 174, 71- 77.
  • LI, G. F., HAN, Y. X., GAO, P., SUN, Y. S., 2016. Enrichment of phosphorus in reduced iron during coal-based reduction of high phosphorus-containing oolitic hematite ore. Ironmak. Steelmak. 43, 163-170.
  • LI, W., HAN, Y., LIU, X., SHAN, Y., LI, Y., 2019. Effect of fluidized magnetizing roasting on iron recovery and transformation of weakly magnetic iron mineral phase in iron tailings. Physicochem. Probl. Miner. Process. 55, 906- 916.
  • LI, Y. J., WANG, R., HAN, Y. X., WEI, X. C., 2015. Phase transformation in suspension roasting of oolitic hematite ore. J. Cent. South Univ. 22, 4560-4565.
  • NUNES, A. P. L., PINTO, C. L. L., VALADAO, G. E. S., VIANA, P. R. M., 2012. Floatability studies of wavellite and preliminary results on phosphorus removal from a Brazilian iron ore by froth flotation. Miner. Eng. 39, 206-212.
  • SUN, Y., ZHU, X., HAN, Y., LI, Y., 2019. Green magnetization roasting technology for refractory iron ore using siderite as a reductant. J. Clean. Prod. 206, 40-50.
  • SWANN, P. R., TIGHE, N. J., 1977. High voltage microscopy of the reduction of hematite to magnetite. Metall. Mater. Trans. B 8, 480-487.
  • TANG, Z., HAN, Y., GAO, P., LI, E., 2019. Fluidization characteristics of a u-type reduction chamber in a suspension roaster. Powder Technol. 345, 64-73.
  • VYAZOVKIN, S., BURNHAM, A. K., JOSE, M. C., LUIS, A. P., SBIRRAZZUOLI, N., 2011. ICTAC kinetics commitee recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta 520, 1-19.
  • WANG, Z. H., LI, G. F., SUN, Y. S., HE, M. Z., 2016. Reduction behavior of hematite in the presence of coke. Int. J. Min. Met. Mater. 23, 1-8.
  • YANG, H. F., JING, L. L., ZHANG, B. G., 2011. Recovery of iron from vanadium tailings with coal-based direct reduction followed by magnetic separation. J. Hazard. Mater. 185, 1405-1411.
  • YU, J., HAN, Y., LI, Y., GAO, P., SUN, Y., 2017. Separation and recovery of iron from a low-grade carbonate-bearing iron ore using magnetizing roasting followed by magnetic separation. Sep. Sci. Technol. 52, 1768-1774.
  • YU, J., HAN, Y., LI, Y., GAO, P., 2018a. Recovery and separation of iron from iron ore using innovative fluidized magnetization roasting and magnetic separation. J. Min. Metall. B 54, 21-27.
  • YU, J. W., HAN, Y. X., GAO, P., LI, Y. J., YUAN, S., LI, W. B., 2018b. An innovative methodology for recycling iron from magnetic preconcentrate of an iron ore tailing. Physicochem. Probl. Miner. Pro. 54, 668–676.
  • YU, J. W., HAN, Y. X., GAO, P., LI, Y. J., 2019. Reductive transformation of Hematite to Magnetite with CO/CO2 Under Fluidized Bed Conditions. J. Northeast. Univ. 40, 261–266. (In Chinese)
  • ZENKOV, V. I., PASICHNYI, V. V., 2010. Reduction kinetics of iron oxides used for hydrogen production in various gas media. Powder Metall. Met. C+ 49, 231–237.
  • ZHANG, X., HAN, Y., SUN, Y, LI, Y., 2019. Innovative utilization of refractory iron ore via suspension magnetization roasting: a pilot-scale study. Powder Technol. 352, 16–24.
  • ZHU, X. R., HAN, Y. X., SUN, Y. S., LI, Y. J., WANG, H. W., 2019. Siderite as a novel reductant for clean utilization of refractory iron ore. J. Clean. Prod., https://doi.org/10.1016/j.jclepro.2019.118704.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-86335aa4-935a-4b3f-b9b5-0f3bf8b1143d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.