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Abstract. In this paper, we consider the class of nondifferentiable multiobjective
fractional variational control problems involving the nondifferentiable terms in the
numerators and in the denominators. Under univexity and generalized univexity hy-
potheses, we prove optimality conditions and various duality results for such nondiffer-
entiable multiobjective fractional variational control problems. The results established
in the paper generalize many similar results established earlier in the literature for
such nondifferentiable multiobjective fractional variational control problems.

Keywords: nondifferentiable multiobjective fractional variational control problem,
efficient solution, optimality conditions, (generalized) univexity, Mond—Weir duality,
Wolfe duality.

Mathematics Subject Classification: 65K10, 90C32, 90C46, 90C30, 90C26.

1. INTRODUCTION

The term multiobjective programming is used to denote a type of optimization
problems where two or more objectives are to be minimized/maximized subject to
certain constraints. Multiobjective variational control programming is an interesting
subject that appears in diverse branches of operational research, for instance, in
industrial process control, the control of production and inventory, information theory,
impulsive control problems, heat exchange networking, biomedicine, flight control
design, in the control of space structures, numerical analysis and many other areas
of modern human activity. Therefore, investigation of optimality conditions and/or
duality for multiobjective variational control programming problems has been one of
the most attracting topics in the theory of nonlinear programming. In recent years,
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most of the optimality conditions and duality results that are available in the literature
of continuous time programming have been established for such extremum problems
involving generalized convex functions (see, for example, [1-4,6,7,10,12,18,19, 21,
23,24,36,37,39-41], and others). That is the case of nondifferentiable multiobjective
fractional variational control problems, which cover a wide range of types of extremum
problems studied in the literature. In this regard, the nondifferentiable multiobjective
variational/control problems were investigated by Husain and Jain [15], Husain and
Mattoo [16]. Mishra and Mukherjee [25] studied nondifferentiable multiobjective
fractional problems under invexity. Under generalized invexity, Nahak and Nanda
[34] obtained several duality results for multiobjective fractional control problems.
Park and Jeong [35] faced duality for multiobjective fractional control problems under
(F, p)-convexity. Later, Mititelu [26], Mititelu and Postolache [28], and Mititelu and
Stancu-Minasian [29] got conditions on efficiency and duality results for multiobjective
fractional variational problems, under (b, p)-quasiinvexity, for instance.

In the paper, the nondifferentiable multiobjective fractional variational control
problem with equality and inequality restrictions is considered involving nondiffer-
entiable terms in the numerators and the denominators of each objective function.
Our aim in this paper is to provide optimality conditions and various duality results
for such nonconvex nonsmooth multiobjective fractional continuous-time problems.
In our approach, the usual convexity requirement for the involved functionals is
relaxed to univexity and/or generalized univexity. Our definitions of univexity and
generalized univexity are more general than those existing in the literature. Therefore,
the optimality conditions and various duality theorems in the sense of Mond—Weir and
in the sense of Wolfe established for the considered nondifferentiable multiobjective
fractional variational control problem generalize and extend a number of results existing
in the literature for such nonsmooth vector continuous-time optimization problems.

This work is organized as follows. In Section 2, we define a nondifferentiable
multiobjective fractional variational control problem involving the nondifferentiable
terms in the numerators and in the denominators of each objective function considered
in the paper. Also, we introduce some denotations and present a number of definitions
which will be needed in the sequel. In Section 3, we give the definition of univexity and
the definitions of generalized univexity in the continuous vectorial case. In Section 4,
we establish the sufficient optimality conditions for the considered nondifferentiable
multiobjective fractional variational control problem. In order to prove these results, we
use the definitions of univexity and generalized univexity introduced in the preceding
section. Subsequently, in Sections 5 and 6, we apply the optimality conditions to
formulate vector dual problems in the sense of Mond—Weir and in the sense of Wolfe,
respectively, and we prove weak, strong, converse and strict converse duality theorems
for nondifferentiable multiobjective fractional variational control problems involving
the nondifferentiable terms in the numerators and in the denominators also under
appropriate univexity and generalized univexity hypotheses. We derive duality results
using also the so-called generalized Schwarz inequality. In Section 7, we conclude the
results established in the paper. Moreover, we show that the results established in this
paper for such nonconvex nondifferentiable multiobjective variational control problems
are more general than those ones in a fairly large number of similar works.
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2. PRELIMINARIES, NOTATIONS
AND THE NONDIFFERENTIABLE MULTIOBJECTIVE FRACTIONAL
VARIATIONAL CONTROL PROBLEM

The following convention for equalities and inequalities will be adopted in the paper.

For any z = (z1, z, ... ,xn)T, y=(y1,y2,.-,yn)T, we define:

(i) z =y if and only if &; = y; for all i =1,2,...,n,
(ii) x > y if and only if x; > y; foralli =1,2,... n,
(iii) * 2 y ifand only if z; =2 y; foralli =1,2,...,n
(iv) z >y if and only if 2 y and x # y.

Let R™ be the n-dimensional Euclidean space and denote by R} = {y € R" : y = 0}
and R?, = {ye€ R":y>0} the nonnegative orthant of R™ and its interior,
respectively. Moreover, let I = [a,b] be a real interval and let P = {1,2,...,p},
J={1,2,...,l} and K ={1,...,s}.

In this paper, we shall assume that z(t) is an n-dimensional piecewise smooth
function of ¢, and #(t) is the derivative of z(¢) with respect to t in [a, b]. Further,
we denote by X the space of piecewise smooth functions =z : I — R™ with norm
|lz|| = [|z|loo + [[Dz|| ., where the differentiation operator D is given by

) )

z=Dzr <= z(t) = z(a) —l—/z(s)d&

where z(a) is a given boundary value. Therefore, 2 4 = D except at discontinuities.
Further, we denote by U the space of piecewise smooth control functions v : I — R™,
with norm ||u||e-

The multiobjective fractional variational control problem is to choose, under given
conditions, a control u(t) such that the state vector z(t) is brought from the specified
initial state z(a) = o to some specified final state z(b) = § in such a way to minimize
a given vector-valued fractional functional. A more precise mathematical formulation
is given in the following optimization problem (MFP):

{fl(t,x(t),x() 1)) + V2O T AL )2 (t) + /ut)T B (D) )}dt

{ql(t,m(t),jc(t) — VaOTCDa(t) — Jult)TEL (1) )}dt

Minimize
T,u

{77t 0(0),0),u(t), (1) + /2O 4,00 + /O ByO)uld) } di
{or(t.2(0).2(0), u(t), i) = V2O Co@O(8) — V) By (B)uld) } dt

subject to  g(t,x(t), &(t),u(t),u(t)) <0, tel
h(t,z(t), z(t),u(t),w(t)) =0, tel
z(a) =a, xz(b) =P,
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where

f:(fl,-.-,fp)ZIXRannXRmXRm*)va
q=(q¢"...,¢°): I x R" x R" x R™ x R™ — RP

are p-dimensional functions and each their component is a continuously differentiable
real scalar function,

g:(gl,...,gl):IxR”xR"memeﬁRl

and
h=(h',....,h") : I x R* x R" x R™ x R™ — R*

are assumed to be continuously differentiable [-dimensional and s-dimensional functions,
respectively. For each t € I, let A;(t), C;(t), 1,...,p, be piecewise positive semidefinite
n X n matrices with A;(-) and C;(-) continuous on I and, moreover, B;(t), E;(t),
i=1,...,p, be piecewise positive semidefinite m x m matrices with B;(-) and F;(-)
continuous on I. Further, we assume that

F(ta(t), ¢, u(t), 1) + /O A (O2(t) +\u®)T B(u(t) 2 0, i€ P,
¢\ (8,2 (0), #(0), ult), a(t)) — /e ()T Ci(t)a(t) — Jul)TE(t)ult) > 0, i€ P.

For notational simplicity, we write z(¢) and 4(t) as « and &, respectively. We denote

the partial derivatives of f?, i = 1,...,p, with respect to ¢, z and &, respectively,
by fi, fi, fi such that fi = (g—;,%) and fi = (%,...,%). In the similar

manner, we formulate f!, fi i = 1,...,p. Similarly, the partial derivatives of the
vector-valued function g and the vector-valued function h can be written, using matrices
with [ rows and s rows instead of one, respectively.

Let S denote the set of all feasible solutions in (MFP), i.e.
S ={(z,u) : z € X,u € U verifying the constraints of (MFP)}.

Definition 2.1. (z,u) € S is said to be a weakly efficient solution for (MFP) if there
is no other (z,u) € S such that

b
{7 a0), 60, u(). a(t) + Vo AD2() + VO BiDu(?) | dt
b
J{ait o(0),a0),u), a(t) — Va®TCO0 — Vul)TEDul?) | dt
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Definition 2.2. (z,u) € S is said to be an efficient solution for (MFP) if there is no
other (z,u) € S such that

b

S (), 60, u(t), 5(0) + /2T A Da0) + /a7 Ba(Du(h)  db

a

j‘{qi(t,x(t),ac(t), O C @) — BBl dt

{ £ (6, 2(8), 2(1), t), (1)) + /TOT A (0)a(t) + \/ﬂ(t)TBi(t)ﬁ(t)} dt
{a (120, 30). a0), i(t) — VEOTCO0 — VaOTE@acb) | dt

with at least one strict inequality for some i € P.

, 1€P

In order to prove the results in this paper, we use the inequality which follows
directly from the generalized Schwarz inequality (see Liu [21, Lemma 3.1]).
Now, let T'(t) be an n x n positive semidefinite symmetric matrix for each t € I,

with T'(+) continuous on I. The following generalized Schwarz inequality is required in
the sequel:

2ITw < VaTTeVwTTw for all z,w € R™, (2.1)
where the equality holds when I'z = ST'w for some 3 = 0.
Hence, if w'Tw < 1, then we have

2 Tw £ VaTlTx. (2.2)

In [8], Bector et al. introduced the definition of a univex function as a generalization
of invexity defined by Hanson [13]. In this section, we generalize the aforesaid definitions
of univexity and generalized univexity notions to the continuous vectorial case.

Following the notational convenience, we use

otz iy u, i) for o(t,x(t), &(t), u(t), u(t)).

Let ¥ : X x U — RP be defined by

b
U(z,u) = /go(t,x,i,u,u)dt,
a

where ¢ = (¢!, ..., 9P) 1 I x X x X x U x U — RP and (Z,u) € X x U be given.
Definition 2.3. If there exist

b=(b1,...,bp) : X xU x X xU — RY,

&= (dy,...,0,): R” — RP,

N:IXR"XR"XR™XxR"xR"<XR"<XR™xR"™— R"
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and
0 IXxR"XR"XR"XxR"xR"xR"xR™"xR"™ =< R™
such that the inequalities
bi(x, u, {f, ﬂ)@z(\lll(x, U) — \I/Z(i', ﬂ))
b

i=1,...,p
hold for every (z,u) € X x U, then ¥ is said to be a (vector-valued) univex functional
at (z,u) € X xU on X xU (with respect to b, ®, 7, ). If inequalities (2.3) are satisfied
for each (z,u) € X x U, then ¥ is said to be a (vector-valued) univex functional
on X x U (with respect to b, ®, n, ). If inequalities (2.3) are satisfied for every
(x,u),(Z,u) € A, where A is a nonempty subset of X x U, then ¥ is said to be
a (vector-valued) univex functional on A (with respect to b, ®, 7, ).

Now, we give the example of a univex functional.
Example 2.4. Let
A= {(z,u) € Rx R:u(t)>0forallt€ [a,b]}
and ¥ : A — R be defined by

u(t)

Let us define b(z,u,z,u) = 1 for each (z,u), (Z,u) € A, ®(a) =e® —1

b
U(z,u) 2/17 (t)dt.

n(t, ,u, z,u) = Egz - i;

Then, it can be shown by Definition 2.3 that the functional ¥ is univex on the set A
with respect to b, ® and 7 given above.

Remark 2.5. For some properties of a class of univex functions, the readers are
advised to consult [8].

Definition 2.6. If there exist
b=(b1,...,bp) : X xU x X xU — RY,
¢ =(D4,...,9,): RP = RP,
N:IXR"XR"XR™XxR"xR"<R"XR™xR"™— R"
and
0:IXxR"XR"XR"xR"xR"<xR"XR™xR"™— R™

such that the relation



On efficiency and duality. . . 341

b
p
.. : .. d .
Z/{[n(t,x,fc,u,ﬂ,i,f,ﬂ, ﬁ)]T [@;(tv‘iafﬂ_jﬁﬂ) - 790;:@7577@7’&’&)}
; ' dt
=1 a (24)
.. . d
+ [0(t, @, &, u, 10, T, 2, 1, 14)) T {% (t,z,2,u,u) — awz (t,z,z,u,u) } }dt >0
p
= > bilw,u, z,0)®; (Vi(x,u) — Ui(z,u)) 20,
=1

holds for every (z,u) € X x U, then the functional ¥ is said to be pseudo-univex at
(z,u) € X x U on X x U (with respect to b, ®, n, ). If (2.4) is satisfied for each
(Z,u) € X x U, then the functional ¥ is said to be pseudo-univex on X x U (with
respect to b, @, n, 0). If inequalities (2.4) are satisfied for every (x,u), (Z,u) € A, where
A is a nonempty subset of X x U, then ¥ is said to be a (vector-valued) pseudo-univex
functional on A (with respect to b, ®, 7, 6).

Definition 2.7. If there exist

b= (b1,...,0p) : X xUx X xU — RY,
o = (Pq,...,9,): R - RP,
N:IXR"XR"XR"XR"xR"XR"XR™xR"™— R"

and 0: I X R" X R" x R™ x R™ x R™" x R™ x R™ x R™ — R™ such that the relation

b
Z/{[n(t,x,w,u,u,i,i,ﬂ, a)]T [@;(t7£‘,i‘7ﬂ7’(]) - %@;(tvi‘wiaﬂ@ ’ITL):|
-1 (2.5)
. . . d
10 DT (40,080, — k(6,500 | Jar 20
p
= bi(w,u, 2, 0)®; (Vi (z, u) — Ui(z,1)) > 0,
i=1

holds for every (x,u) € X x U, (z,u) # (Z,u), then the functional ¥ is said to be
strictly pseudo-univex at (z,u) € X x U on X x U (with respect to b, ®, n, 0). If
(2.5) is satisfied for each (Z,u) € X x U, then the functional ¥ is said to be strictly
pseudo-univex on X x U (with respect to b, ®, n, 0). If inequalities (2.5) are satisfied
for every (z,u),(Z,u) € A, (x,u) # (z,u), where A is a nonempty subset of X x U,
then U is said to be a (vector-valued) strictly pseudo-univex functional on A (with
respect to b, ®, n, 0).
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Definition 2.8. If there exist

b= (b1,...,0p) : X xUXx X xU — RY,
®=(Py,...,0,): R — RP,
N:IXR"XR"XR™"XR"xR"XR"XR™xR"™— R"

and

O:IXR"XR"XR"XR"xR"XR"xR™xR"™—R"

such that the relation

i=1

holds for every (x,u) € X x U, then the functional ¥ is said to be quasi-univex at
(z,u) € X x U on X x U (with respect to b, ®, n, 0). If (2.6) is satisfied for each
(z,u) € X x U, then the functional ¥ is said to be quasi-univex on X x U (with respect
to b, ®, n, 0). If inequalities (2.6) are satisfied for every (z,u), (z,u) € A, where A
is a nonempty subset of X x U, then ¥ is said to be a (vector-valued) quasi-univex
functional on A (with respect to b, @, 1, ).

3. OPTIMALITY CONDITIONS

First, we write the necessary optimality conditions for the multiobjective fractional
variational control problem (MFP), using the relationship between a weakly efficient
solution (an efficient solution) of the problem (MFP) and a weakly efficient solution (an
efficient solution) of the associated auxiliary vector nonfractional variational control
problem.
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Now, we consider, therefore, the auxiliary vector nonfractional variational control
problem (MFP)(z) for the considered multiobjective fractional variational control prob-
lem (MFP) as follows:

Minimize /b ult), a(t))

2T A1 (0)x(t) + /u())T B (u()
S (A ORIORTORIG)

— a7 C(B)(t) = \/u(®) Er(ult)| ot

b
[ {#res,500).u00.060)

+ /20T Ap(t)z(t) + \/u(t)” By(t)u(t)

subject to  g(t,z(t), z(t),u(t),w(t)) <0, tel
h(t, x(t), &(t), u(t),u(t)) =0, tel
z(a) =, x(b) =B,
where z = (z1,..., zp) € RY is a parameter. We denote by S(z) the set of all feasible

solutions of (MFP)(z).

Definition 3.1. (z,u) € S(2) is said to be a weakly efficient solution of (MFP)(2) iff
there is no another feasible solution (x,u) of (MFP)(Z) such that the inequalities

b

/{f(tx( +\/ T Ax(t +\/ )T Biul(t
b—zi [q (t, z(t), & — V2t Ci(t)(t) — \/T]}
</{fi(t,x( +\/ T Az (t +\/ t)T Byu(t

— % [qi(t,as(t),a*c(t),a(t),a(t)) — \/i(t)TC'Jc(t) + \/a(t)TEia(t)} }dt, Vie P

hold.
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Definition 3.2. (z,u) € S(Z) is said to be an efficient solution of (MFP)(z) iff there
is no another feasible solution (x,u) of (MFP)(Z) such that the following inequalities
hold:

b
/ {7t (), 0, ut), w(t) + Vet Aw(t) + 1 ult)T Buu(t)

\
KNI
| —
Qs
—
JP#-
81
—~
y
:_/
I
=
“ﬁl
—~
y
:_/
N
=
\
=
—
=

S
0
I
—
N
+
=
—
E
S
&
N
=
| I
—
Q
4@6-
<
o~
m
e

. [qi* (£, 2(), (), a(t), 1)) — \/2()TCro2(t) + \/u(t)TEi*u(t)} Jat
for some i* € P.

Now, we give the result which connects a weakly efficient solution (an efficient
solution) of (MFP) with a weakly efficient solution (an efficient solution) of its
associated vector control problem (MFP)(z).

Lemma 3.3. (Z,u) € S is a weakly efficient solution (an efficient solution) of the
considered multiobjective fractional control problem (MFP) if and only if there exists
Z € R such that (Z,u) is a weakly efficient solution (an efficient solution) of its
associated vector control problem (MFP)(2Z) and, moreover,

b

f{ (¢, 3(t), 2(), a(t), i(t)) + /20T A () (L) +\/ﬂ(t)TBi(t)ﬂ(t)}dt

Z; =

, VieP.

[ (700, 501,500, ) —FOTCTOR) —/AOT B }
(3.1)
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Proof. Let (z,u) € S be a weakly efficient solution of (MFP) and z = (21,...,%,) € RP
be defined by (3.1). We proceed by contradiction. Suppose, contrary to the results,
that there exists (%, %) € S such that

b
/ {fi(t, i, 4,1, 1) + VET A7 + Vil Biii

_ 3 [qi(t,fc,fc, @, 1) — VAT Cif — \/aTEia} }dt

b
< /{fi(t,q‘;, Z,u,) + V2T Az + /uT Bsu

- [qi(t,fc,f, i, 1) — VITOiT + \/aTEia} }dt, Vie P.

Hence, by (3.1), we have

b
/ {£1(6,2,8,0,8) + VET A3 + Va7 Byadt | dt

fi(t, &, &, a,u) + /2T Az + \/ﬂTBZ-ﬂ} dt

X / {qz(t,{f?7.i‘,ﬁ,ﬂ) - \/jTszi? - \/ﬂTEza} dt7 Vi € P.

a

Thus, the inequalities

Vie P

hold, contradicting the assumption that (z,u) € S is a weakly efficient solution
of (MFP).
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Conversely, suppose that (z,u) € S is not a weakly efficient solution of (MFP).
This means that there exists (Z,@) € S such that

K {fi(t, %, 10, 6) + VET AT + \/ﬂTBiadt} dt

Iy {qi (t, &, 4,1, i) — /ZTCiz — \/aTEiﬁ} dt
N {fi (t, %, %, 4,4) + /ZT AT + \/ﬁTBm} dt
N {qi(t, %, %, 1, 1) — VTTCoZ — \/ﬂTEZ-a} dt

=2z, Yi€eP

Hence, the following inequalities

b
/{fi(t,gz,a‘c, @, ) + /2T A7 + /T By

b
<0= / {f"(t,a‘:,i«,a, i) + /2T A;z + \/uT B;u

a

— 3 [qi(t,i,i,ﬂ,&) VT iz + \/aTEZ-a} }dt, Vie P

hold, contradicting the assumption that (z,u) is a weakly efficient solution (an efficient
solution) of its associated vector control problem (MFP)(Z). This completes the proof
of this lemma. O

Now, we present the theorem which is the continuous version of the result given
in [22].

Theorem 3.4. A solution (z,u) € S(Z) is an efficient solution in the vector control
)s

problem (MFP)(2) if and only if (Z,u) solves each scalar control problem (FPP),.(z,u) :

b

Minimize / {7 @ a(0),00), u(t), (1) + VBT A (0(0) + 1/ul(t)T Be- (t)u(t)

a

-

~Zie [a" (6 a(t), #(0), u(t), u(t))
— V2 Dz (t) — Jult) By (t)u(t)} }dt
(

) 0, tel,
),u(t) =0, tel,
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b
/ (it (), 2(0),u(t), a(0) + \J2()T As(0a(t) + Ju(t) Bityu(t)

~z [qi@,x(t),a'c(t), u(t), (1) = \/2()T Ci(t)a(t) - Wt)TEi(t)u(t)} Jat

A

b
/ (£ 50, 50), 1(0), (1)) + 7T A0) () + 4/ a()? B (t)a(t)

= (4 (620,50, a(0,5(0) — /2O CO0) + /a7 B (0]},
Vi i,

In order to prove sufficient optimality conditions for the considered multiobjective
variational programming problem (MFP), we recall the Karush—-Kuhn—Tucker neces-
sary optimality conditions for this vector optimization problem. This theorem is the

continuous version of Theorem 3.1 of [38] in fractional multiobjective programming
and also Theorem 2.1 of [17].

Theorem 3.5. Let (Z,u) be a normal weakly efficient solution of the vector opti-
mization problem (MFP). Then there exist A € RP, Z € RP and piecewise smooth

functions £(-) : I — R', {(-): I — R*, 7(:) : I - R", w(-) : I = R", 6(-) : I = R™,
9(-) : I = R™ such that

+ &) g2 (t, 7, 2,4, 1) + C(t) he (¢, T, 2,14, 1) (3.3)
didae . .
= dt(;)\z {fi(t,x,x,u,u) — zqu(t,z,au,u)}

+ &) gu(t, 2, 2,0, 1) + C(1) hu(, 7, 3,4, 1) (3.4)
P
_ %(Z N fit 3,3, 0, 6) — 7l (t, 3, 7, 0, 1) )
=1
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(3.6)
! () Ai(t)r(t) = /()T A (1) (t),  a(t)” Bi(t)s(t) = \/a(t)" Byult), 3.7)
z(t)T Ci(t)w(t) = \/Z()T Ci(t)Z(t),

(3.8)

()T EI() = Jaut)TEba(t), tel i=1,...,p,
T A S 1, 5T Bi(t)o(t) < 1, 30
wt) ' Ci(w(t) £1, IBTE®)I)S1, tel, i=1,...,p, (3.9)
A>0, Me=1, £(t)=0. (3.10)

Now, we prove the sufficiency of the above necessary optimality conditions under
appropriate univexity and generalized univexity hypotheses. For notational convenience,
we use £ for £ (¢) and ¢ for {(t).

Theorem 3.6. Let (z,u) be a feasible solution in the considered multiobjective
variational programming problem (MFP) and the necessary optimality conditions
(3.3)(3.10) be satisfied at (z,u) with A\ € RP and piecewise smooth functions
€): T - R and ¢(-) : T — R*, #(-): I - R*, w(-) : I — R", 6(*) : I — R™,
1§() : I — R™. Further, assume that the following hypotheses are fulfilled:

(

a)

is a strictly univex function (a univex function) at (Z,u) on S with respect to
b=(b1,...,bp), ®=(Dy,...,D,), n, 6,
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(b)
b
/él(t)gl(t,-,-,-,-)dt,...,/gl(t)gl(t,-,-,-,~)dt

a

is univex at (Z,u) on S with respect to by = (by,, ..., bg,), ®g = (Pgys--.,Pg,), 1, 0,

(c)
b b
/El(t)hl(t,~,-,-,-)dt,...,/Es(t)hs(t,~,~,~,~)dt

is univex at (Z,u) on S with respect to by, = (bp,,...,bn.), Pp = (Ppy,..., Pn.),
n, 0,

(d) bi(z,u,z,u)>0,i=1,...,p, for every (z,u) € X x U,

(e) ®,;,1=1,...,p, are strictly increasing functionals satisfying a < 0 = ®,(a) < 0,
®;(0) =0,

(f) @4, j € J, are increasing functionals satisfying a <0 = ®y (a) =0,

(g) ®p,, k € K, are increasing functionals satisfying a < 0= ®p, (a) £ 0.

Then (z,u) is an efficient solution (a weakly efficient solution) of (MFP).

Proof. Suppose, contrary to the result, that (Z,u) is not an efficient solution of (MFP).
Then, there exists (Z,4) € S such that

b
/ {fi(t,j, %, 6) + VITAE + /il Bsa

.- [q"(t,az,i«,a, &) — iTCiF — \/aTEia] }dt

\ (3.11)
< /{fi(t,f,fn, a, 1) + VT A7 + Vil Bia
- % [¢'(t,3,5,0,) - Vi Cia — Vil Bl Jat, vieP,
b
/{f (t.%,4,1,1) + VT Ap & + /i Bj
_ 3 [q (4,7, %, 6, 8) — V/FTCr i — \/uTEZ*u} }dt
(3.12)
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By the necessary optimality condition (3.7) and the generalized Schwarz inequality
(see (2.2)), the inequalities (3.11) and (3.12) yield

b (3.13)
< / {f”(t, T,2,0,1) + TL AT 4 u’ B;d
— % [q'(t, 7,3, 0,1) — 37 Cyw — u” E;) }dt, VieP,
b
/{ff@ﬁﬁfﬂhﬂ)+fTAﬂr+aTBﬂ5
—z [0 (08 8, 6) — 3T C — 7 By bt
(3.14)

< {f’“ (t, 2,2, 1, 1) + T AT + 0" Bsd

S

&I

— Zix [q"(t, LT U, 1) — T Cyetd — aTEi*ﬁ} }dt for some i* € P.

By hypotheses (d) and (e), it follows that b; (Z,4,Z,u) > 0, ¢ = 1,...,k, and ®,,
i=1,...,k, are strictly increasing functionals with ®;(0) < 0. Thus, (3.13) and (3.14)
give

< (3.15)
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(3.16)

Since the hypotheses (a)—(c) are fulfilled, by Definition 2.3, the inequalities
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b b
by, (Z, 1,2, 1)y, (/gjga‘ (t, 2, 2,1, 1) dt/_j(t)gj(t,i:,f,ﬂ,ﬁ)dt)

a a

I\
S \@
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By the necessary optimality condition (3.10), we have A > 0, ATe = 1. Thus, (3.20)
gives

b
1=

b
5 [ {250,828 007 [ £6,3,5,5.8) + A0
¢ - Zi[q;(t,.f,i‘,ﬂ,a) - Cz(t)u_](t)]

1

(3.21)

Using the feasibility of (Z,4) in the problem (MFP) together with the necessary
optimality condition (3.5), we get

b b
/Ejgj (t. 7, 2,4, 4) dt — /Ejgj (t,z,z,u,u)dt <0, jeJ(t). (3.22)

By hypothesis (g), each &, , j € J(t), is an increasing functional. Since
by, (%,1,z,u) 2 0, j € J, therefore, (3.22) gives

1 b b
> b, (&1, 7, 1) Py, &9 (42,4, 1,0) dt — /éjgﬂ (t,, &, a,u) dt
=t a a (3.23)
l
< by, (3,1, 7, 1) Py, (0) £ 0
j=1

=0, jeJ().
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By the feasibility of (Z,4) and (Z,u) in (MFP) together with

we have

Thus,

S

k=1
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Adding both sides of (3.21), (3.24) and (3.26), we get that the following inequality
b

/{[n(t, %40, 3,5 0, 0)]T {zﬁ: MLt 7, 0, 5) + As(OF(2)

— ZilqL(t, %, z, 4, 4) — Ci(t)w(t)))

holds, contradicting the necessary optimality conditions (3.3) and (3.4). O

In order to illustrate the sufficient optimality conditions established in Theorem 3.6,
we give an example of a multiobjective fractional variational control problem involving
the nondifferentiable terms in the numerators and in the denominators of each objective
function.

Example 3.7. Consider the following multiobjective fractional variational program-
ming problem defined (MFP1) by

Minimize fol (2 —z+t+1+VaAz)dt f01 (2% — 2+ 2t + 2+ VaAyx) dt
inimiz , )
T ! z+t+1—VxCix) dt ! T+ 2t + 2 — /xCox) dt

0 0

g (t,x)=2> -2 20,
z(0) ==z (1) =0,

where A1 = Ay =1, C; = Cy = 1. Note that S = {:UER:&L‘2—$§O} and Z(t) = 0,
t € [0, 1], is a feasible solution in (MFP1). We now show that the Karush-Kuhn—Tucker



356 Tadeusz Antczak, Manuel Arana-Jimenéz, and Savin Treanta

necessary optimality conditions (3.3)—(3.10) are satisfied at z(t) for (MFP1). In fact,
by (3.3) and (3.5), we have that, respectively,

A (28 — 14 A7 — 21 (1 — C10)) + Ao (28 — 1+ AgF — 25 (1 — Caw))

HE(r-1) =0 (820

& (22 —2) =0. (3.28)

Further, by the Karush-Kuhn—Tucker necessary optimality condition (3.6), it follows
that

(2 —z+t+1+2)dt  [(t+1)dt

Of—

O e | O —

7= = =1, (3.29)
[(Z+t+1—z)dt (t+1)dt
1 ’ 1
J(@—z+2t4+2+3)dt  [(2t+2)dt
7= =L =1. (3.30)
[(Z+2t+2—T)dt [ (2t + 2)dt
0 0

If we set 7(t) = 1 and w(t) =1, ¢t € [0,1] in (3.27), then also the Karush-Kuhn—Tucker
necessary optimality conditions (3.7)—(3.9) are fulfilled. Further, by A; = Ay = 1,
C1 = Cy = 1 and the Karush-Kuhn—Tucker necessary optimality condition (3.10),
(3.27) yields

47 + 6,28 — 1) = 0. (3.31)
Consider two cases.

(i) & # 0. Then (3.31) gives Z = 4_5_;51. But this solution doesn’t satisfy (3.27).

(ii) & = 0. Then, z(t) = 0, t € [0, 1], satisfies the the Karush-Kuhn-Tucker necessary
optimality conditions (3.3)—(3.10) for (MFP1).

Now, we show that the sufficient optimality conditions established in Theorem 3.6
are also satisfied at  for (MFP1). Let us set ®1(a) = e*—1, ®3(a) = e*—1, @4, (a) = a,
bi(z,2) = bay(2,%) = by, (2,z) = 1 for any z € S, n(z,z) = (22 — 2?). Then, by
Definition 2.3, it can be shown that the appropriate univexity hypotheses are fulfilled
at £ on S with respect to the functions given above. Then, by Theorem 3.6, Z is an

efficient solution in (MFP1).

Now, we prove the sufficient conditions for optimality of (z,u) € S for the considered
multiobjective fractional variational programming problem (MFP) under generalized
univexity assumptions.
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Theorem 3.8. Let (z,u) be a feasible solution in the considered multiobjective
variational programming problem (MFP) and the necessary optimality conditions
(3.3)-(3.10) be satisfied at (Z,u) with A € RP and piecewise smooth functions

E): T =R and{(-): T — R, 7(): I - R", w(-): I = R", §(:) : I — R™,

9(-) : I — R™. Further, assume that the following hypotheses are fulfilled:

D\Q_
3/\
=
~
]
=
S~—"
Jr
B!
N
iS]
=
S~—
=1
~—~
=
Jr
S
>
—
~
~—
=d!
=
N~—

is a strictly pseudo-univez function (a pseudo-univezr function) at (z,u) on S with
respect to b= (b1,...,by), ® = (P1,...,Pp), n, 0,

(b)
b b
/gl(t)gl(t7 ERERE] )dta s a/gl(t)gl(ta EREES) )dt
is a quasi-univex function at (z,u) on S with respect to by = (bg,...,by,),
Py = (q)glv - "(I)gz)7 n, 0,
(c)
b b
/El(t)hl(tv 9y Ty )dta sy / Es(t)hs(ta IERERS )dt
a a
is a quasi-univex function at (T,u) on S with respect to by, = (bny,---,bn.),

(Dh = (‘bhl7. . '7©h5)7 n, 07

(d) bij(x,u,z,u) >0,i=1,...,p, for every (z,u) € X x U,

(e) ®;, i =1,...,p, are strictly increasing functionals satisfying a < 0 = ®;(a) < 0,
2,(0) <0,

(f) @y,, j € J(t), are increasing functionals satisfying a < 0 = ®,. (a) =0,

(g) ®p,, k € K, are increasing functionals satisfying a < 0= &y, (a) < 0.
Then (Z,u) is an efficient solution (a weakly efficient solution) of (MFP).
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Proof. We proceed by contradiction. Suppose, contrary to the result, that (z,u) is not
an efficient solution of (MFP). Then there exists (%, %) € S such that

1

b
/{fi(t,:z, b, 1) + aET A4z + Vil Bit

b (3.32)
< / {fi(t,f,i, a,4) + /ZT A% + /T B
—z [q’(t,f@,a, ) — VT Ciz — \/ﬂTE/u} }dt, Vi e P,
and
b
/{f (t, 2,4, a,1) + /ZT Ay + /@' Bi-1
% [0 (t2.8,8,8) — ViTCo - ViTErd| at
(3.33)

b
< /{f”* (t, 2,2, 4,1) + /7T Ay + /T Bi-1t
a

-

— Zi [q’ (t, %, 2,0, 0) — /2T Cpe — \/ﬁTEi*ﬂ} }dt for some i* € P.

By the necessary optimality conditions (3.7) and (3.8) and the generalized Schwarz
inequality (see (2.1)), (3.32) and (3.33) yield

(3.34)
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b
/Z\i* {f (t, &, &, 1, 1) + 27 AT + 0" Bsd

t,%,%,a,8) — 37 Cied — ~TE1*1§} }dt
(3.35)

By hypotheses (d) and (e), b; (Z,4,z,u) > 0,i=1,...,k, and ®;, i =1,...,k, are
strictly increasing functionals with ®,(0) < 0. Thus, (3.13) and (3.14) imply

= (3.36)

< b (Z, 1, z,u) P (0) < 0 for some i* € P.
(3.37)
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Hence, the inequalities (3.36) and (3.37) yield
b
p

Z bi(%, 0, T, 0)P; (/ Xi{fi(t, &, &0, 0) + 2T AT + 4 B;o

i=1 s

P

i=1

(3.38)

From the feasibility of (Z,4) in (MFP) and by the necessary optimality condition
(3.5), it follows that

b
/Ejgf (t, 2,2, a,i)dt — /éjgﬂ' (t,z,z,a,u)dt £0,j € J(t). (3.39)
g;» J € J(t), is an increasing functional and

y J
®,.(0) 20, 5 € J(t). Since by, (2,a,z,u) 2 0, j € J, therefore, (3.23) gives

a (3.40)
l
< by, (&1, Z, )Py, (0) £ 0.
j=1
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Hence, by Definition 2.8, (3.40) implies

Q \Q_
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_ % (E}gi (t,x,x',u,u))D}dtgo, JEJ(t).
(3.41)

By the feasibility of (Z, %) and (z, @) in (MFP) together with by, (%, 4, Z,u) 20, k € K,
it follows that

b b
> bn, (@, 2, 1)y, /gkh’f (t, &, &, 1, 1) dt—/fkhk(t,i,a?ﬂ,a)dt
k=1 a a (3.42)
= bn, (&1, %, 0) P, (0) £ 0

Thus, by Definition 2.8, (3.42) implies

b S
/ { (.88, 00] |G )

k=1
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Adding both sides of (3.38), (3.41) and (3.43), we get that the inequality

b

/ { [ (t, &, &, i, %, &, u, )] {XP: Ai (f;(t, T, %, 0, 1) + Ai(t)7(t)

a i=1

holds, contradicting the necessary optimality conditions (3.3) and (3.4). O

4. MOND-WEIR TYPE DUALITY

In this section, we prove duality results between the considered multiobjective fractional
variational control problem (MFP) and its parametric Mond—Weir type multiobjective
variational dual problem (VMWD) defined as follows:
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Maximize
y,v

subject to x (a) = «, x(b) = 3,
Z Ni[ £yt y(2), 9(8), v(t), 0(t)) + As(t)r(2)

— 2 g} (&, y(8), 5(0), v(1), 9(8)) — Co(Byw(t)] ]
+E(8)T gy (1,9 (), 5(8), 0(8), 5(8)) + C(O By (£, (), 5(2), v(2), 5(8))
=2 {ZM (Filt, (), 5(8), 0(8), 5(8)) — 2}, (1, y(2), §(2), v(2), 5(1)))

=1
+E() g5ty (1), 9(1), v(), 0(t)) + () hy (£ y(2), 5(t), v(t), 0(2)) |, teL,
Do Nl y(0),9(8),0(0), 0(8) + Bi(1)a(t)

— i [q (£, y(), 9(8), v(1), (1) — Ei()9(t)] ]
() g0 (t,y(1), 9(t), v(1), 0(t)) + () ho (£, y(2), 5(1), v(t), 0())]
d
T dt

|:Z )\z (fqu(t7 y(t)v y(t)v U(t)v U(t)) - qé(t, y(t)7 y(t)’ U(t)v ’U(t)))

)T galt y(0). 3(E), 0(t), 5(8)) + (1) hy (9(e), 9(8), v(t), 6(8) |, teT,
b
/ &g (b y(t), 3(t), o(t), (1)) dt 2 0, j e T,
b

/g‘k(t)hk (t,y(t), (), v(t),0(t))dt =0, k€K,

a
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r(t) € R", 6(t) € R™, r(t)TA;(t)r(t) £1, §t)TB;(t)s(t) <1,
w(t) € R", 9(t) € R™, w®) Ci(w(t) <1, 9&)TE(#)0(t) < 1,

fortel,i=1,...,p,
A>0, Me=1, £@1) 20,

where e = (1,...,1) € RP is a p-dimensional vector. It may be noted here that the
above dual constraints are written using the Karush—Kuhn—Tucker necessary optimality
conditions for the problem (MFP).

Let Qpw be the set of all feasible solutions (y,v, A, &, ¢, r, 6, w,d) in Mond—Weir
dual problem (VMWD). We denote by Y the set

Y = {(y,U) EXXxU: (y,’U,Z,)\,€7C,’I",6,’UJ,19) EQMW}

Now, under univexity and generalized univexity, we prove several duality results

between (MFP) and (VMWD).

Theorem 4.1 (Weak duality). Let (x,u) and (y,v,2,\,&,(, 7,0, w,9) be any feasible
solutions in (MFP) and (VMWD). Further, assume that at least one of the following
hypotheses are fulfilled:

(A)
(a)

b
( J{f e+ T + TR

— a1l (t ) = L) = TEL()9()] Jt,

ey

] \@‘
—
~
>
—
T~
~—
_|_
&
b

bS]
—
~
~—
S
=
~—
_|_
~
=
—~
=
(o9
—~
=

is univex at (y,v) on SUY with respect to b= (b1,...,b,), ® = (P1,...,D,),
n, 9,
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(b)

b b
(/gl(t)gl (tv'a'a'a')dtv"'v/€l(t)gl(t"7'7'v')dt)

is wuniver at (y,v) on S UY with respect to by = (bg,...,by),
(bgz(q)gl""vq)gz): n, 0,

(c)
b b
(/Cl(t)hl (t,~,~,~,~)dt,...,/Cs(t)hs(t,~,~,~,~)dt)

a

is univer at (y,v) on S UY with respect to by, = (bp,,...,bn.),
), = (q)hU"'aq)hs)) n, 0,

(d) bi(z,u,y,v)>0,i=1,...,p,

(e) ®;, i = 1,...,k, are strictly increasing functionals satisfying a < 0 =
®i(a) < 0, ®;(0) = 0, and moreover, ®,., j € J, ®y,, k € K, are increas-
ing functionals satisfying a < 0 = ®,.(a) =0, a £ 0 = Pp,(a) =0,

respectively.
(B)
(a)
b
(/ Al{fl(ta ERERE} ) + 'TAl (t)’l“(t) + 'TBI (t)(S(t)
= 21lg (b, ) = O Bw(t) — TE (D)9(0)] ft,
b' ,
[ {7 + T a0 + T B 060
- Z:D[qp(t7 ERERE! ) - 'TCp(t)w(t) - 'TEp(t)ﬁ(t)]}dt>
is pseudo-univex at (y,v) on S UY with respect to b = (b1,...,bp),
O = (Pq,...,D,), 1, 0,
(b)

b b
/gl(t)gl (t7'7'a'a')dta"'7/§l(t>gl(t"a'a"')dt

is univexr at (y,v) on S UY with respect to by = (bg,...,bg),
by = (q)917"'vq)gz>7 n, 0,
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b b
/Cl(t)hl (t,-,~,~,~)dt,...,/(S(t)hs(tmy,')dt

is univer at (y,v) on S UY with respect to by, = (bp,,...,bn.),
), = (q)hl?' s q)hs); n, 0,

(d) bi(z,u,y,v)>0,i=1,...,p,

(e) ®;, i = 1,...,p, are strictly increasing functionals satisfying a < 0 =
®i(a) <0, ®;(0) =0, and, moreover, ®,,, j=1,...,0, @y, k=1,...,5, are
increasing functionals satisfying a < 0 == ®,.(a) =0, a £ 0= &y, (a) = 0.

Then, the following cannot hold

b
/ (£t ., 0,0) + 2T Ai(0)2(0) + \Jut) Bi(t)ut)

— 2 (" (6 2(0), 2(0), u(t), i(t) — Ve O D) — VaE(Du(b)) pat
(4.1)

b
< [{F u®.30,00).50) + \/uOT A0u(0) + /o Baloye(t)

=z ('t 9, 9(8), v(1), 5(8) = VOO — VeOEDe(®)) Jat,
Vi e P.

Proof. Let (z,u) and (y,v, 2z, A\, &, (,r,6,w,¥) be any feasible solutions in problems
(MFP) and (VMWD), respectively. We proceed by contradiction. Suppose, contrary to
the result, that the inequalities (4.1) are fulfilled. By (y,v,z, A\, &, ¢, 0, w,9) € Qpw
and also the generalized Schwarz, (4.1) yields

b
/ {fi(t, z, @ u, 1) + x A + ul Bid — z; [qi (t,x, &,u,u) — T Cyw — uTEiﬂ] } dt
b
< / {F 1ty 9,0,0) +y" AF + 0" Bid — 2 [¢'(t,9,9,0,0) — y" Cow — v E;0] } dt,
a

Vie P.
(4.2)

Now, we prove this theorem under hypothesis (A).
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By hypotheses (d) and (e), b;(z,u,y,v) >0,i=1,...,k, and ®;, i =1,...,k, are
strictly increasing functionals with ®;(0) < 0. Thus, (4.2) gives

b
bi(z,u,y,v)®; (/ {fitt,z, @ u,u) + 2" Ayr + " B;s
— i l:ql(tv xz, fb; u, U) - xTCZ"lU — ’UJTEl’ﬁ:I }dt
b
- / {Fit,y, 9,0, 0) +y" Air + 0" B;o

a

(4.3)

— [ql(tv Y, Y, v, /U) - yTCzw — ’UTEZ‘19:| }dt)
<®,0)=0, VieP

Using hypothesis (a), by Definition 2.3, (4.3) yields

b
[ {inttadowiy o o) (156 0.00.9) + A0 (0
“ — 2 (g} (t, y,9,v,0) — Ci(H)w(t))
(T30, 8) — 2205 15,0, )
100t w05, y,5,0,0)] " [ £, 5,0,0) + Bi()a()
— 2 (gb{t.0.5.0.5) — EOO(D)
O Fit 0, 6) — g (.0, 0) | Jae <
Vi € P.

By the last constraint of (VMWD), the above inequality implies

b p

[t oo o) [t 0, 900,9) + Aot
a = —Z (Q;/(ta yvyvvvi)) - Cz(t)w(t))
- % (f;'(tvy?yvvv@) - qu;(t7y7yvvvv))]
O, s, 9, 0,0)]7 | F(E s G, v,0) + Bil£)(2)
— % (qqz; (t’ Y, 9,0, ’U) - E(t)’l?(t))

d, . )
- %(ff}(ta yay'avai)) - Ziq%(t,yayava®)>]}dt <0.
(4.4)
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From the feasibility of (z,u) in (MFP) and the feasibility of (y, v, z, A, &, ¢, r, 6, w,d)
in (VMWD), we get

b b
/ &g’ (t, @, a0, u,a)dt — / &9 (ty,g,0,0)dt 0, je€J(t). (4.5)
a a

By hypothesis (d), ®,,, j € J, is an increasing functional. Since
by, (z,u,y,v) 20, j€J,
(4.5) gives
b b
by, (x,u,y,v)®,, /ﬁjgj(t,x,i‘,u,u)dt—/fjgj(t,y,y,v,i})dt (4.6)
< by, (x,u,y,v)Py,(0) 0, j e J(t).

By assumption, each function &7¢7 (t,-,-,-,-), j € J, is univex at (y,v) on SUY with
respect to by, , @4, n. Hence, by (4.5), Definition 2.3 yields

b
/Z {[n(t7$7x7ua u,y,y,v,v)]T [gjg;(tvyvyﬂ}vv) - a (f]g; (tvyvya v, ’U)):|
o J=1

+ [e(ta r,r,u,u,Y,Yy,v, U)]T |:§]g1])(t7 Y,Yy,0, U) - a (gjg‘q])(tv Y,Y,0, U)):| }dt é 0.
(4.7)

By the feasibility of (z,u) in (MFP) and (y,v) in (VMWD) together with
bhk(m,u,y,v) 20, k € K, we have

b b
bhk(x,u,y,v)@hk /Ckhk(tayay,vaij)dt_/Ckhk(tayvy.avai})dt (4 8)

=bp, (z,u,y,0)Pp, (0) <0, keK.

By assumption, each function (¥R (t,-,-,-,-), k € K, is univex at (y,v) on SUY with
respect to by, , ®p,, n. Hence, by (4.8), Definition 2.3 yields

b
- L L d L
Z /{[n(tax7 z,u,u,y, ya’l])’u)]T [Ckhﬁ(t7 y,y,v,v) - % (Ckhqu (ta yvyavav)):l
k=1

d
+ [a(ta zviauauay7yavab)]T {Ckhﬁ(tvyayava 1}) - %Ckhﬁ(tayaya Ua ’l)):| }dt é O
(4.9)
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Combining (4.4), (4.7) and (4.9), we get that the inequality

P

/b{[n (t,x,:’c,u,d,i,f,a,ﬂ)f [Z i (f;(t,%y’v’@) + A ()

=1

— zla}(t, 9,9, 0,9) = Ci(Hyw (b))

l s
+ > &gty g0, 0) + > Gl (ty, 9,0, 0)

j=1 k=1
d i . S
_%< )\l (fy(tayayvvvv) - ZiQy(t,Z/,Z,j,'U,U))
i=1

+ ngy(ta Y, ya v, ”U)

+ CThy(ta Y, ?J, v, ’U)):|

14
+ [6 (t7 €, jjv u, I.L, Y, yv U, U)]T |:Z )‘l (f; (t7 Y, ya v, U) + Bz(t)é(t)

— % [sz; (t’ Y, 9,0,0) — E(t>’l9(t)] )

l s
+ D &gh(ty, 9, 0,9) + > Gty 0, 0)

j=1 k=1

(.

7

14
>\i (fv (ta Y, ya v, ’U) — Ziqy (t, Y, ya v, ”U))
=1

+ ng'[) (ta Y, ?]7 v, ’U)

+ (Thy(t, y,y,v,@))} }dt <0
(4.10)

holds, contradicting the first constraint of (VMWD).

Now, we prove this theorem under hypotheses (B).

We proceed by contradiction. Suppose, contrary to the result of the theorem, that
the inequalities (4.1) are satisfied. In the similar way as in the proof of this theorem
under hypothesis (A), we obtain inequalities (4.2). Multiplying each inequality (4.2)
by Ai, i =1,...,p, using hypothesis (b) and then summing the resulting inequalities,



370

Tadeusz Antczak, Manuel Arana-Jimenéz, and Savin Treanta

we get

p b

Z bi(x, u,y,v)®; ( / N{fi(t x,d,u,0) + 2 Agr +u” B;o

=1 a

- Zl(ql(tv x, i'7 u, ’LL) - -TTCi'lU — UTElﬁ)}dt)
P b
< Zbi(Cﬂ,U,y,v)@i(/)\i{fi(t,y,y,v,i)) +yT A;r + 0T B;6

a

— % (qZ (ta Y, Y, U, U) - yTCﬂU - UTE[[?)}dt) .

Hence, using hypothesis (a), by Definition 2.6, the above inequality gives

b p

[tz g £t 50,0) + Ae)rte)
- — il (£, 9.0.0) = Ci(Dw(D)]
- % (f;(tv Y, y7 U, U) - Ziqgi)(ta Y, yv v, U)) }
(@&, i,y 5,0, 0] [ F(E s 5,0,0) + Bi(h)s(0)
= 2ilay (t.y, 9,0, 0) — E@)0(t)]
- %(fv(tv Y,9,v, U) - Ziqg(t> Y,9,v, U))}}dt< 0.
(4.11)

From the feasibility of (z,u) in (MFP) and the feasibility of (y, v, z, A, &, ¢, r, 6, w,d)
in (VMWD) together with hypothesis (e), we get

l b b
Zbgj (ac,u,y,v)CI)gj /fjgj(t,x,ab,u,u)dt - /fjgj(tayayav7@)dt
j=1 a a

(4.12)
1
< Z by, (z,u,y,v)P,, (0) < 0.
j=1
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Using hypothesis (c), by Definition 2.8, (4.12) yields

b
/Z {[n(ta Z,T,u,u,y,y,v, U)]T [gjg:jg(ta Y,y,0, U) - % (gjgf/ (t> Y,Y,0, U)) :|
o J=1
T, o (4.13)
+ [G(t,x,m,u,u,y,y,v,v)] |:£jg%(t7:'~hyavav)

_ % (gjgg(ty,y,v,i})) } }dt <0.

Again from the feasibility of (z,u) in (MFP) and the feasibility of
(y,v,2, \,&, ¢, 7, 6, w,9) in (VMWD) together with hypothesis (e), we get

s b b
S by (10,5, 0) 0, / ol (b, 2, &, u, i)t — / o (8, 9, v, 0)dt

k=1 (4.14)
- Z bhk (I, u,y, U)q)hk (0) § O
k=1
Using hypothesis (d), by Definition 2.8, (4.14) yields
b p
/Z {[n(t,x,i,u,%y,y,v,q})]T [{kh’;(t,y,ym,v) - ((khg (t,y,y',v,i)))}

k=1

(4.15)

. . . VA . .
+[0(t, x, &, u, 0, y,7,v,0)] [Ckh’i(t,%y,v,v)

d
— = (Gl (ty 9 v,0) | b < 0.

Combining (4.10), (4.13) and (4.15), we get that the inequality (4.10) holds, contra-
dicting the first constraint of (VMWD).
This completes the proof of this theorem. O

If some stronger univexity hypotheses are assumed, then the following result can
be proved.

Theorem 4.2 (Weak duality). Let (z,u) and (y,v,z,\, &, (7,0, w,¥) be any feasible
solutions in problems (MFP) and (VMWD). Further, assume that the following
hypotheses are fulfilled:
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=21l () = TCHOw () = TE (H9(0)] fat,

ey

is strictly univex at (y,v) on S UY with respect to by, ¢, n, 0, where
bf(xvu7y7v) > 0;
(b)

is ungver at (y,v) on S UY with respect to by = (by,,...,by), ®4 =
((I)gla"'aq)gz)’ m, 9:
(c)

b

b
/Cl(t)hl (t,',',',')dt,...,/Cs(t)hs(t,‘,‘,~,‘)dt

a

is univex at (y,v) on S UY with respect to by, = (bpy,...,bn.), Pn =
((I)hl,...,q)hs), n, 9,

(d) bi(xauay7v) >0,i=1,...,p,

(e) @y, i =1,....k, @4, j=1,...,1, @y, k = 1,...,s, are increasing func-
tionals satisfying a < 0 = ®y,(a) <0, @5, (0) £0,a = 0= ®,,(a) 20,
a<0= Py, (a) £0.
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(B)
(a)

b
/)\l{fp(ta ERERS] ) + 'TAP(t)T(t) + 'TBP(t)5<t)

- Zp[qp(t? Ty ) - 'Tcp(t)w<t) - 'TEP(t>’l9(t)]}dt>

is strictly pseudo-univezr at (y,v) on SUY with respect to b = (b1,...,bp),
¢ = ((I)la'-'aq)p)7 n, 07

(b) bi(l'vuayvv) > 07 1= ]-7 oDy

(c)

is ungver at (y,v) on S UY with respect to by = (by,,...,by), ®, =
((I)gla"'v(l)gz)7 77; 0;
(d)

a

b b
(/Cl(t)hl (t,-,-,~,~)dt,...,/Cs(t)hs(t,-,~,~,~)dt)

is univex at (y,v) on S UY with respect to by, = (bpy,...,bn.), ®p =
(q)hl, ey q)hs); n, 9,

(e) ®;,i=1,...,p, are increasing functionals, ®,,, j =1,...,1, ®p,
are increasing functionals satisfying a < 0 = @4 (a) = 0,
Pp(a) £ 0.

1,...,s,

k
a 0 =

il
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Then, the following cannot hold

b
/{fi(t,x,:'r,u,u)Jr T A;(t)x + /uT B;(t)u

a -z (qi(t7x,gb,u,u) - \/xTCi(t)x - \/uTEi(t)u) }dt

b
< [{r i)+ iy + /T

_ (qi(t,y,g, v, 8) —\JyTCi(t)y - \/UTEi(t)v> }dt, ieP,

and

{fi* (t,z,Z,u, 1) + /2T A= (B)z + /uT Bi= (t)u

S .

i (o i+ 5T+ T B ()

b
< [{# i)+ A+ B 00

— e (4 (o, 0+ IO+ 7B 00) Jat
for at least one i* € P.

Theorem 4.3 (Strong duality). Let (Z(t),u(t)) be a weakly efficient solution (an effi-
cient solution) of the considered multiobjective variational programming problem (MFP).
Further, assume that the Kuhn—Tucker constraint qualification is satisfied for (MFP).
Then, there exists A\ € RP, Z € RP and piecewise smooth functions 5() :I — R' and
C(): T =R, 7(:): T —R", w(:): T —R" 6:):T—R" I(): 1 R™ such that
(Z(t),u(t), 2, A, (1), C(¢), 7(2), 0(¢),0(t), 9(t)) is a feasible solution for the Mond-Weir
type multiobjective variational dual problem (VMWD). If also the weak duality theorem
holds between (MFP) and (VMWD), then (Z,4, z, X, £(t), {(t),7(t), 6(t), w(t),D(t)) is
a weakly efficient solution (an efficient solution) of a mazimum type of (VMWD) and
the objective function values are equal.

Proof. By assumption, (Z(t),u(t)) is an efficient solution in the considered multi-
objective variational programming problem (MFP). Hence, by Theorem 3.5, there
exists A € RP, Z € RP and piecewise smooth functions £(-) : I — R' and
C(): T =R, 7(:): T =R, w():1— R"6:):1—R" I :I—> R"
such that the Karush-Kuhn—Tucker optimality conditions (3.3)—(3.5) are satisfied.
Thus, by the Karush-Kuhn—Tucker optimality conditions (3.3)—(3.5), it follows that
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(z(t), u(t), z, X, E(t), C(t),7(t),6(t), w(t),I(t)) is a feasible solution the Mond-Weir type
multiobjective variational dual problem (VMWD) and the two objective functionals
have same values. Efficiency of (Z(t),u(t), z, A, £(t), {(t), 7(t), 6(t), w(t),D(t)) in the
problem (VMWD) follows directly from weak duality (Theorem 4.2). The proof in the
case when (Z,u) is a weakly efficient is similar and it follows from Theorem 4.1. [

Theorem 4.4 (Strict converse duality). Let (,u) and (gj,ﬁ,i,/_\,g, ¢, 7, 5,1?1,15) be
weakly efficient solutions of (MFP) and (VMWD), respectively, the Kuhn—Tucker
constraint qualification is satisfied for (MFP). Further, assume that the following
hypotheses are fulfilled:

(a)

is strictly univez at (y,v) on SUY with respect to b = (by,...,bp),
n, 0,
(b)

b b
/él(t)gl(t?aaa)dt7a/él(t)gl<t7777)dt

is univez at (y,v) on SUY with respect to by = (by,,...,bg), g = (Dg,,...,Py,),
n, 0,

(c) . .
/él(t)hl(t,.,.,.,.)dt,...,/és(t)hS(t,-,-,-,-)dt

is ungvex at (y,v) on SUY with respect to by, = (bny, ..., bn.), P = (Ppys ..., Ph.),
n, 0,

(d) b(z,4,5,0) >0,i=1,...,p,

(e) ®;, i=1,...,p, are strictly increasing functionals satisfying a < 0 = ®;(a) < 0,
®;(0) 20, @y, j€J, Py, k € K, are increasing functionals satisfying a < 0 =
®y.(a)20,a20= Pp,(a) 20, ke K.

Then (Z,u) = (y,0).
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Proof. Suppose, contrary to the result, that (z,u) # (¥,v). Since (z,u) and

(gj, v,z,\&,(,7,0,w, 1§) are weakly efficient solutions of (MFP) and (VMWD), respec-
tively, by the strong duality theorem (Theorem 4.3), we have

/{f"(t,m,ﬁc,u,a)—i— zTA;(t)T + \/uT B;(t)u

-z (qi(t,is,f,ﬂ,ﬂ) = \/i"TCi(t)a_c - \/ﬂTEi(t)a> }dt
= /b {fi(t, 9,9, 0,0) + J@TAZ-@)@ + \/@TBi(tﬁ

- (qi (t,y,9,0,0) — \/ngCi(t)gj - \/UTEi(t)’U> }dt, i€ P.

By (’ 0,2,\,6,C, 7, 0,0, 15) € Quw and the generalized Schwarz inequality (see (2.1)),

b
/ {fitt, 2, z,u,i) + 2" A;7 + 0" B;d — % [¢' (¢, 2,2, 0, %) — 2" Cyw — u’ B } dt

= / {Fi(t,5,9,0,0) + 5T A7 + 07 Bio— % [¢'(t, 9,9, 9,0) — 5" Cyw — o7 B;9] } dt,

1€ P.
(4.16)
Hence, by assumption (e), (4.16) yields
P b B
> bi(#, 1,7, )P </ {fl (t,z,2,u,u) + 27 A7 + ul' B;o
i=1 a
— z [¢'(t, 2, 2,4, 0) — 27 Cyw — u" E;Y] }dt
b



377

On efficiency and duality. . .

Using assumption (a), by Definition 2.3, (4.17) gives

b
[{nsiaizgo|
@ — % [d (t,4,5,9,0) — Ci(t)w(t)]

= (£ (65.5,0.9) - 24} (45,5,7,7)) |

________ ’ f;(tagvgal_}al_}) + Bz(t)g(t)
5 [ab0,5,5,5,5) — B0
d, ... .
_%(fﬁ(t7y7yavav)
- Z4}(,5,5,5,1)) | Jdt < 0.

Thus, (§,9,2, A, &(t), C(t),7(t),5(),w(t),I(t)) € Quw yields

o i=1
- % (f (tayayvvvv) — Zidy (t,y,y,’l},’l)))}
[0 (2,5,0,0.5,5,5,0)) [ £i(t,5,5.5,5) + Bi(£)d(t)
- 21' [q'f)(tv ga yLa 77; {)) - E(t)fg(t)]
- %(fi)(t7yayav7v)
- Z4}(t,5,5,5,9)) | Jdt <0
(4.18)
Using (z,u) € S, (37,1_), ZNEC T, u_},ﬁ) € Qpw together with hypothesis (e), we get
b b
by, (1, ,0)®y, ( / &9’ (t.2,2,0,u) dt — / &9’ (t.9,9,0.0) dt) (4.19)
JjeJ).

< by, (7.1, 9),,(0) £ 0,
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From hypothesis (b), by Definition 2.3, (4.19) yields

(4.20)

By (:i’,ﬁ) € Sa (g763275‘35757f753w71§) € QMW and bhk (i‘7ﬂ7ga{}) Z 07 k e K?
we obtain

a (4.21)

= Z bhk (IIJ, u,gj,f}) Dy, (O) <0.
k=1

Using assumptions (c¢) and (e), by Definition 2.3, (4.21) yields

b
s . . . . - .. d = _ L _
/ { [77 (t7i7i‘7aaaag7g7675)]T |:Ckh§ (t?g7y7v7v) - % (Ckhg(tay7y7v7v)):|

(4.22)

d -
= 7 (Gehi (,9,9,0,0)) } }dt <0.
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Combining (4.18), (4.20) and (4.22), we get that the inequality

b p
/ { [n(t,z,z,4,u,9,9,0, 6)]T [Z Xi(fh(t g 9,0,0) + A (E)r(t)
- Z’L[qz(t7 Y, 3)7 v, U) - Cl(t)w(t)])

l s
+> &g (Lyg,0,0) + > Ghl(ty, §,0,0)

j=1 k=1

.

?

)\i (f;(tv Y, y, v, 1])

P
=1

— ziqy(t, 9,9, v, U)))}

— 7 [qi(t, Y, Y, 0, 0) — E(t)ﬂ(t)b

l s
+ Z 'fjg{;(tv Y, ya v, ’U) + Z Ckhﬁ(ta Y, ya v, ’U)

j=1 k=1

.

(2

)\i (fv (t, Y, yv v, 'U)
1

P
— Zidy (t7 Y, ya v, U)))
+ ngv (tv Y, y? v, ’U) + CThv (ta Y, yv v, U)i| }dt <0
holds, contradicting the first constraint of (VMWD). This completes the proof of this
theorem. O

5. WOLFE TYPE DUALITY

In this section, we prove duality results between the considered multiobjective fractional
variational control problem (MFP) and its Wolfe type multiobjective variational dual
problem (VWD).
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The problem (VWD) is defined as follows:

b

Maximize ( J{#wo.00.00.50) + \rom 000 + o7 B

y,v
a

- [ql@,y(t),y(t),v<t>,o<t>> —\JyOTC(e)() - ¢v<t>TE1<t>v<t>]
€009 (1 y(1). 50, v(0), 5(1)) + C(OT Rt y(e). 5(0). v(0), (1))} d,

b

/ {7t y(0), 50, 0(0), 50) + 1y T A, (£)y(0) + /o) By (t)o(t)

a

2 [q%,y(t>,y<t>7v<t>,@<t>> — YT () - ¢v<t>TEp<t>v<t>]

+ &) gty (1), 9(1), (1), (1) + (&) R (E,y(8), 5(t), v(t), 0(1)) }dt>

subject to z(a) = a, z(b) = S,

Z X [fy(ty (@), 5(t), v(t), () + Ai(t)r(t)
— Z [q;(f,y(t),y(t),’l}(t),’[)(t)) - Cz(t)w t)] ]
+E(0) gy (1), 9(t), (1), 0()) + () hy (t, y (1), 5(2), v(8), 5 (8))

= LI A (A3 90, 500), 0(0),506)) — 7y (1, (2) 500), () 0(0))
i=1

€0 93 (L y (0, 9(8), v(0), 2(8)) + SO hy (1 (D), 5(0), v(), 5(0) |, teT,

Z Xi[falt y(),5(t),v(t),5(t) + Bi(t)s(t)

= lal (4, 9(2),9(0),0(0), 50)) — B9 )]
)T gt 5(0) 5(8), 0(2), 0) + (T o (15(0), 5(2), (2), ()]
= S A (A3 w0, 50), 0(0),5(0)) — a0, 5(0), (1), 5(4)

i=1

+E() 9ot y(2), 5(1), v(t), 0(1)) + C(6) Ry (8,5 (1), 4(2), v(D), (1)) } , tel,
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r(t) € R", 6(t) € R™, r(t)TAi(t)r(t) £1, §(t)TBi(t)s(t) <1,
w(t) € R, 9(t) € R™, wt)TCit)wt) <1, d)TE;t)d() <1,

fortel,i=1,...,p,
A>0, Me=1, £&(t)=0,

where e = (1,...,1) € RP is a p-dimensional vector. It may be noted here that the
above dual constraints are written using the Karush-Kuhn—Tucker necessary optimality
conditions for the problem (MFP).

Let Qy be the set of all feasible solutions (y, v, z, A\, &, ¢, r, 6, w,d) in Wolfe type
multiobjective variational dual problem (VWD). We denote by Yy the set

YW = {(y,'U) € X x U : (y7U7Z’)‘7£7<aTa6aw7ﬁ) € QW}
Further, we define the vector-valued function I" for (MFP(z)) as follows:

F(y7v7 Z)é-’ C? r? 67 w’ 19) = (Fl(y) /U) Z’ é-) C’ T’ 6) w7,l9)7 A 7Fp<y’ U’ z?é—) C’ T’ 67 w?’l9)) b
where

Fi(yvvv 2757 C»ra (5,10,19)
b

= / {Ft9.3,0.9) + 7 A0 () + 0T B0

a

— % (ql(t, Y, ya v, 'U) - yTCl(t)w(t) - UTEZ(t)ﬁ(t))
e Tg(t,y, 9,0,9) + COTh(t, v, 9,0, i;)}dt, icP.

Theorem 5.1 (Weak duality). Let (z,u) and (y,v,z,\, &, (7,0, w,9) be any feasi-
ble solutions in problems (MFP) and (VWD). Further, assume that the following
hypotheses are fulfilled:

(A)
(a) the function T (-, -, 2,&,(,r, 0, w,9) is univez at (y,v) on S U Yy with respect
to b= (bl,...7bp), P = (‘I)l,...,(pp), n, 0,
(b) bi(z,u,y,v)>0,i=1,...,p,
(c) ®;, i = 1,...,p, are strictly increasing functionals satisfying a < 0 =
®,(a) <0, ®;(0) £ 0.
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(B)
(a) the function T'(-,-,2,&,(, 7,0, w,¥) is pseudo-univezr at (y,v) on SUY with
respect to b= (b1,...,bpy), ® = (<I>1,...,(I> ), n, 0,
(b) bi(z,u,y,v)>0,i=1,...,p,

(c) ®;, i = 1,...,p, are strictly increasing functionals satisfying a < 0 =
®;(a) <0, ;(0) = 0.

Then, the following cannot hold

b
/{fi(t,x,¢7u,u)+ T A;(t)x + /uT B;(t)u

— % (qi(t,x, &, u, ) — \/mTC’i(t)x - \/uTEl(t)u) }dt

b

</{fi(t,y,y,v,1'))+\/yTAi(t)er vT B, (t)v

a

— 54 (9.9.0.0) = \yTCilt)y — /o7 Ei(t)o)

+aﬁ%m%@uw+qw%m%@umﬁuiep

Proof. Suppose, contrary to the result of the theorem, that the inequalities (5.1) are
satisfied. From (x,u) € S and (y,v, 2, A, &, ¢, 7, 6, w,¥) € Qu, we have

b
/ { Filt, @, iy, 1) + \/xTAi(t)x +\/uT Bi(t)u

_ <qi(t, r.du, i) — [T Cilt)a - \/uTEi(t)u>

+e®)Tg(t,z, & u, i) + COThE, z, &, u, u)}dt
b
< [ {7 i) + o a0y + o7 B0
- ( (t,y,9,v,0) — \/yTC y—\/ (t))

+ &) gt y, 9,0,0) + TR (ty,9,0,0)} dt, i€ P.

(5.2)
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By (y,v,2,\&,(,r,0,w,9) € Quw and the generalized Schwarz inequality (see
Lemma 2.1), (5.2) yields

b
/ {fl(ta €T, jjvuﬂ:") + xTAiT + UTBI‘(;

—zi( C(tx,du u)—a:TC'iw—uTEﬂ?)
+eW) gt x, &, u, )

+Ct)Th(t,x, i, ’d)}dt

b
< / { £ty 9.0,0) + y" Ar + 0" By

— 2 (¢'(t,y,9,v,9) — y" Ciw — T Ey)
+EM g(t,y,9,v,0)

+<(t)Th (tvyﬁgavai}) }dt7 i = 1,...,p.

Now, we prove this theorem under hypothesis (A).
Using hypotheses (b) and (c), (5.3) gives

b
bi(z,u,y,v) (/ fltxxuu)—i—x TAr +uTB;6
— 2z (qi (t,x, 2, u,u) — 2z Cyw — uTEﬂ?)
+E) gt a(t), @ (t), ult), u(t))

+ () h(t, x(t), 2(2), u(t), u(t))}dt
(5.4)

b
- / {fi(t, Y, 9,0, 9) +y" Air + 0" By6
— % (ql(ta Y, ?J7 v, U) - yTCiw — UTEi’l?>

070 (630, 0) 4 GO 00,90, )
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Using hypothesis (a), by Definition 2.3, the above inequalities yield
b

J{twygv o) [t ) + Astor (o)

¢ — % [q;(t7 Y, y7 v, U) - Cl(t)w(t)}
+&0gy(ty,9,0,0) + T hy(t,y, 9,0, 9)
_% (fy(t7 Y,Y,0, U) - Zlqy(ta Y,Y,0, U)

"‘ngy(tay,yanU) +<Thy(tay7y7v7v)):| (55)
H6(t, 3,8, i,y G0, 0] F1(E . 5,0,0) + Bi()3()

= zilay (t.y, 9,0, 9) — E;(£)0(t)]
+&0g0(ty, 9,0, 0) + Ty (ty, 9, v,0)
d . .
_% (fv (ta Y, 9,0, U) — Zily (t7 Y90, U)
+ ETgf} (ta Y, y.y v, U) + CTh@(t7 Y, ya v, ’U)):|}dt<0

From the last constraint of (VWD) it follows that A > 0, ATe = 1. Then, (5.5) implies
that the inequality

b

St ssvipo o [Z N (F3(t.9,0,9) + Ai(Dr()

p i=1

— 51}t 9,90, ) - Ci(Hw(®)))
+ &0 gy (85,9, 0,0) + ¢ hy (t,,9,0,0)

d (S iy o
_%(Z )\i(f;/(t»yv?%v?v) - Ziqy(tvyvya v, ’U))
=1

+ &gyt y, 9,0, 0) + CThg(t7y,y7v,®))]
P

00 0, D) | S A (F 0,0 + B 0500

i=1
-z [QZ (ta Y, y> v, ’U) - Ei (t)ﬁ(t)})
+ & g0 (t,y, 9,0, 0) + (T hy(t,y, 9, v, )

d (<& o o
i (Z Xi(fo (Y, 9,0, 0) — 2iqs (£, 9, 9,0, D))
=1

-+€Tgo@,ydhtu®)*—CTh@@,ydhv,&O}}dt<0~

holds, contradicting the constraints of (VWD).
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Now, we prove this theorem under hypothesis (B). In the similar way as in the proof
under hypothesis (A), we obtain inequalities (5.4). By hypothesis a), it follows that
I, z¢,(rd,w,) is univex at (y,v) on S U Yy with respect to b = (b1,...,bp),
® = (Pq,...,D,), 1, 0. Hence, by Definition 2.6, (5.4) yields (5.5). The last part of
this proof is the same as in the proof of this theorem under hypothesis (A).

This completes the proof of this theorem. O

Theorem 5.2 (Strong duality). Let (Z,u) be a weakly efficient solution (an effi-
cient solution) of the considered multiobjective fractional variational control problem
(MFP). Further, assume that the Kuhn—Tucker constraint qualification is satisfied
for (MFP). Then there exists A\ € RP and piecewise smooth functions £(-) : I — R!

and ((-): I — R, #(-): I = R", w(:) : I — R™, §(): I — R™, 9(-) : [ = R™ such
that (5:,71,2, A,f,(,?,é,w,ﬁ) is a feasible solution for the Wolfe type multiobjective
variational dual problem (VWD). If also the weak duality theorem holds between (MFP)

and (VWD), then (z,u, z,\, &, (, T, 5, w 19) is a weakly efficient solution (an efficient
solution) of a mazimum type of (VWD) and the objective function values are equal.

Proof. By assumption, (z,u) is a weakly efficient solution in the considered multi-
objective variational programming problem (MFP). Hence, by Lemma 3.3, (Z,u) is
also a weakly efficient solution of the multiobjective nonfractional variational control
problem (MFP(z)). Then, by Theorem 3.5, there there exist A € RP and piecewise
smooth functions £(-) : I — R' and {(-) : I — R*, #(:) : [ — R", w(:) : I — R™,

5(:): I — R™, 9(-) : I — R™ such that the Karush-Kuhn-Tucker optimality condi-
tions (3.3)(3.4) are satisfied. Thus, (Z,4, 2, ,§,{,7,0,w,7) is a feasible solution in
Wolfe dual problem (VWD) and the two objective functionals have same values.
Now, we show that (:v W, Z,\EC T, 0,0 19) is a weakly efficient solution in
Wolfe type dual problem (VWD) for z. We proceed by contradiction. Suppose that

(:v, u,Z,\,E,C, T, 0,0, 19) is not weakly efficient in (VWD) for the given z. Then, there
exists (¢, 7, z, X,E Z 7, 5 w 19) € Qu such that
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Using the feasibility of (z,u) in (MFP) together with the Karush-Kuhn—Tucker
necessary optimality condition (3.5), we get that the inequality

b

/ {fi(t,a‘c,j:,a, u) + \/:ETAi(t)a_c + \/ﬂTBi(t)u

holds, contradicting the weak duality theorem (Theorem 5.1).

Thus, (z,a,2,\,&,(,7,0,w,0) is a weakly efficient solution of a maximum type
n (VWD) O

Theorem 5.3 (Converse duality). Let (:aa,z?\,é, ¢, 7, 5,117,19) € Qw be a weakly
efficient solution (an efficient solution) of a mazimum type in Wolfe type dual problem
(VWD) and (z,u) € S. Further, we assume that at least one of the following sets of
hypotheses is fulfilled:

(A)
(a) the function T ( SZNE GO, ’,15) is univez at (y,v) on SUYw with respect
tob=(b1,...,by), ®=(P1,...,P,), n, 0,
(b) b;(Z,u,y,0) >0,i=1,...,p,
(¢) ®;, i = 1,...,p, are strictly increasing functionals satisfying a < 0 =
®,(a) <0, ;0020

(a) the function F( V2N EC, T 5711),5) is pseudo-univez at (y,v) on SUY with
respect to b = (bl, coby), @ =(D,...,9,), 71, 0,

(b) bi(Z,@,5,0) >0,i=1,...,p,

(¢) ®;, i = 1,...,p, are strictly increasing functionals satisfying a < 0 =
®,;(a) <0, ®;(0) = 0.

Then (Z,u) is a weakly efficient (an efficient solution) of the considered multiobjective
variational programming problem (MFP).

The proof of the above result is similar to the proof of Theorem 5.1.

Theorem 5.4 (Strict converse duality). Let (Z,u) and (g,@,é,&,é, ¢, 7, 5,121,1?) be
weakly efficient solutions of (MFP) and (VWD), respectively, and, moreover, the
Kuhn—Tucker constraint qualification be satisfied for (MFP). Further, assume that the
following hypotheses are fulfilled:
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(a) the function T (~, SENEC T, 0, W ) is strictly univezx at (y,v) on S U Yy
with respect to b= (b1,...,b,

(b) bi(z,u,y,v)>0,i=1,...,p,

(¢) ®;, ¢ = 1,...,p, are strictly increasing functionals satisfying a < 0 =
®,;(a) <0, ®;(0) £ 0.

(a) the functionT'(-,-, 2, \,€,(,7,6,w,0) is strictly pseudo-univez at (y,v) on SUY
with respect to b= (by,...,by), ® = (P1,...,P9,), 1, 0,

(b) bi(Z,@,75,0) >0,i=1,...,p,

(¢) ®;, i = 1,...,p, are strictly increasing functionals satisfying a < 0 =
®,;(a) <0, ®;(0) £ 0.

Then (z,u) = (y,0).

6. CONCLUSION

In this paper, a nondifferentiable multiobjective fractional variational control problem
involving the nondifferentiable terms in the numerators and in the denominators has
been considered. By using Dinkelbach approach, parametric optimality conditions
of Karush—Kuhn—Tucker type have been derived for such nondifferentiable vector
optimization problems. Under univexity and generalized univexity hypotheses, the
sufficiency of these necessary optimality conditions have also been established. Further,
parametric Mond—Weir vector optimization dual problem and parametric Wolfe dual
problem have been constructed for the considered nondifferentiable multiobjective
fractional variational control problem and also under univexity hypotheses several
duality results have been established between them and the considered nonsmooth
multiobjective fractional continuous-time problem. Our results apparently generalize
a fairly large number of optimality conditions and duality results previously derived
for multiobjective variational control problems with the nondifferentiable terms in the
numerators and in the denominators established under others generalized convexity
notions.

In fact, there are the following special cases of the nondifferentiable multiobjective
fractional variational control problem (MFP) considered in the paper, which can be
found in the literature:

(i) If Bi(t) = E;(t) = 0,4 = 1,...,p, then we obtain a nondifferentiable multi-
objective fractional variational control problem. Such multiobjective fractional
continuous-time problems have been considered by Park and Jeong [35]

(i) If A;(t) = Ci(t) = 0, B;(t) = E;i(t) = 0,4 =1,...,p, then we obtain a differ-
entiable multiobjective fractional variational control problem. Various types of
such multiobjective fractional continuous-time problems have been considered
by Bhatia and Mehra [10], Nahak [33], Nahak and Nanda [34], Mishra and
Mukherjee [23], Mititelu and Stancu-Minasian [29]. The optimality and duality
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results established in the paper generalize similar results proved in the foregoing
papers.

(iii) If C;(t) =0, B;(t) = E;(t) =0,i=1,...,p, then we obtain a nondifferentiable
multiobjective fractional variational control problem in which nondifferentiability
enter due having a term of square root a quadratic form in each numerators
of objective functionals. Various types of such nondifferentiable multiobjective
fractional continuous-time problems have been considered by Ding et al. [11],
Mishra and Mukherjee [25], Park and Jeong [35].

(iv) If all denominators of objective functions in (MFP) all equal to 1, then, in fact,
(MFP) reduces to a nondifferentiable continuous-time vector optimization problem
in which nondifferentiability enter due having a term of square root a quadratic
form in each component of the vector-valued integrand of objective functional.
Various types of such multiobjective variational problems have been considered
by Husain and Jain [15], Husain and Mattoo [16], Kim and Kim [19], Mishra and
Mukherjee [24].

(v) If all denominators of objective functions in (MFP) all equal to 1 and A4;(t) =
C;(t) = 0, then we obtain a differentiable multiobjective variational problem.
Various types of such smooth vector continuous-time optimization problems were
considered by Ahmad and Sharma [2], Aghezzaf and Khazafi [1], Antczak [4],
Bhatia and Kumar [9], Bhatia and Mehra [10], Gramatovici [12], Lee et al. [20],
Mishra and Mukherjee [26], Mititelu [27].

(vi) If all denominators of objective functions in (MFP) all equal to 1, A;(t) = Cy(t) =0
and, moreover, omitting the boundary conditions for the fixed end points as was
done by Mond and Hanson [32], we obtain the so-called Multiobjective Natural
Boundary Value Problem considered, for example, by Bhatia and Mehra [10].

The optimality and duality results established in the foregoing papers can be
generalized and derived easily on the lines of the analysis of this research.

The question arises as to whether the results developed in the paper hold for
various classes of nondifferentiable multiobjective fractional variational control problem
involving the nondifferentiable terms under other generalized convexity hypotheses.
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