PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Fusion of multiple estimates by covariance intersection: Why and how it is suboptimal

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The fusion under unknown correlations tunes a combination of local estimates in such a way that upper bounds of the admissible mean square error matrices are optimised. Based on the recently discovered relation between the admissible matrices and Minkowski sums of ellipsoids, the optimality of existing algorithms is analysed. Simple examples are used to indicate the reasons for the suboptimality of the covariance intersection fusion of multiple estimates. Further, an extension of the existing family of upper bounds is proposed, which makes it possible to get closer to the optimum, and a general case is discussed. All results are obtained analytically and illustrated graphically.
Rocznik
Strony
521--530
Opis fizyczny
Bibliogr. 24 poz., wykr.
Twórcy
autor
  • European Centre of Excellence - New Technologies for Information Society & Department of Cybernetics, Faculty of Applied Sciences, University of West Bohemia, Univerzitní 8, 306 14, Pilsen, Czech Republic
autor
  • European Centre of Excellence - New Technologies for Information Society & Department of Cybernetics, Faculty of Applied Sciences, University of West Bohemia, Univerzitní 8, 306 14, Pilsen, Czech Republic
Bibliografia
  • [1] Ajgl, J. and Šimandl, M. (2014). On linear estimation fusion under unknown correlations of estimator errors, Proceedings of the 19th IFAC World Congress, Cape Town, South Africa, pp. 2364-2369.
  • [2] Ajgl, J., Šimandl, M., Reinhardt, M., Noack, B. and Hanebeck, U.D. (2014). Covariance Intersection in state estimation of dynamical systems, Proceedings of the 17th International Conference on Information Fusion, Salamanca, Spain.
  • [3] Ajgl, J. and Straka, O. (2016a). Covariance Intersection in track-to-track fusion with memory, Proceedings of the 2016 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, Baden-Baden, Germany, pp. 359–364.
  • [4] Ajgl, J. and Straka, O. (2016b). Covariance Intersection in track-to-track fusion without memory, Proceedings of the 19th International Conference on Information Fusion, Heidelberg, Germany.
  • [5] Ajgl, J. and Straka, O. (2017). A geometrical perspective on fusion under unknown correlations based on Minkowski sums, Proceedings of the 20th International Conference on Information Fusion, Xi’an, China, pp. 725–732.
  • [6] Arambel, P.O., Rago, C. and Mehra, R.K. (2001). Covariance intersection algorithm for distributed spacecraft state estimation, Proceedings of the American Control Conference, Arlington, VA, USA, pp. 4398–4403.
  • [7] Bar-Shalom, Y., Li, X.-R. and Kirubarajan, T. (2001). Estimation with Applications to Tracking and Navigation, Wiley, Hoboken, NJ.
  • [8] Bar-Shalom, Y., Willet, P.K. and Tian, X. (2011). Tracking and Data Fusion: A Handbook of Algorithms, YBS Publishing, Storrs, CT.
  • [9] Chen, L., Arambel, P.O. and Mehra, R.K. (2002). Fusion under unknown correlation—covariance intersection as a special case, Proceedings of the 5th International Conference on Information Fusion, Annapolis, MD, USA, pp. 905–912.
  • [10] Deng, Z., Zhang, P., Qi, W., Liu, J. and Gao, Y. (2012). Sequential covariance intersection fusion Kalman filter, Information Sciences 189: 293–309.
  • [11] Gao, Y., Li, X.R. and Song, E. (2016). Robust linear estimation fusion with allowable unknown cross-covariance, IEEE Transactions on Systems, Man, and Cybernetics: Systems 46(9): 1314–1325.
  • [12] Hanebeck, U.D., Briechle, K. and Horn, J. (2001). A tight bound for the joint covariance of two random vectors with unknown but constrained cross-correlation, Proceedings of the IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems, Baden-Baden, Germany, pp. 147–152.
  • [13] Hu, J., Xie, L. and Zhang, C. (2012). Diffusion Kalman filtering based on covariance intersection, IEEE Transactions on Signal Processing 60(2): 891–902.
  • [14] Julier, S.J. and Uhlmann, J.K. (1997). A non-divergent estimation algorithm in the presence of unknown correlations, Proceedings of the American Control Conference, Albuquerque, NM, USA, pp. 2369–2373.
  • [15] Julier, S.J. and Uhlmann, J.K. (2001). General decentralized data fusion with covariance intersection, in D.L. Hall and J. Llinas (Eds.), Handbook of Multisensor Data Fusion, CRC Press, Boca Raton, FL.
  • [16] Kowalczuk, Z. and Domżalski, M. (2013). Asynchronous distributed state estimation for continuous-time stochastic processes, International Journal of Applied Mathematics and Computer Science 23(2): 327–339, DOI: 10.2478/amcs-2013-0025.
  • [17] Kurzhanski, A.B. and V´alyi, I. (1997). Ellipsoidal Calculus for Estimation and Control, Birkhäuser, Boston, MA.
  • [18] Lehmann, E.L. and Casella, G. (1998). Theory of Point Estimation, 2nd Edn., Springer, Berlin/Heidelberg.
  • [19] Li, X.-R., Zhu, Y., Wang, J. and Han, C. (2003). Optimal linear estimation fusion—Part I: Unified fusion rules, IEEE Transactions on Information Theory 49(9): 2192–2208.
  • [20] Reinhardt, M., Noack, B., Arambel, P.O. and Hanebeck, U.D. (2015). Minimum covariance bounds for the fusion under unknown correlations, IEEE Signal Processing Letters 22(9): 1210–1214.
  • [21] Seeger, A. (1993). Calculus rules for combinations of ellipsoids and applications, Bulletin of the Australian Mathematical Society 47(1): 1–12.
  • [22] Simon, D. (2006). Optimal State Estimation: Kalman, H-Infinity, and Nonlinear Approaches, Wiley, Hoboken, NJ.
  • [23] Uhlmann, J.K. (2003). Covariance consistency methods for fault-tolerant distributed data fusion, Information Fusion 4(3): 201–215.
  • [24] Wu, Z., Cai, Q. and Fu, M. (2018). Covariance intersection for partially correlated random vectors, IEEE Transactions on Automatic Control 63(3): 619–629.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-862dbc67-0140-435c-bb2e-b24d547ef403
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.