PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

SoBT-RFW : Rough-Fuzzy Computing and Wavelet Analysis Based Automatic Brain Tumor Detection Method from MR Images

Autorzy
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
One of the important problems in medical diagnosis is the segmentation and detection of brain tumor in MR images. The accurate estimation of brain tumor size is important for treatment planning and therapy evaluation. In this regard, this paper presents a new method, termed as SoBT-RFW, for segmentation of brain tumor fromMR images. It integrates judiciously the merits of rough-fuzzy computing and multiresolution image analysis technique. The proposed method starts with a simple skull stripping algorithm to remove non-cerebral tissues such as skull, scalp, and dura from brain MR images. To extract the scale-space feature vector for each pixel of brain region, the dyadic wavelet analysis is used, while an unsupervised feature selection method, based on maximum relevance-maximum significance criterion, is used to select relevant and significant textural features for brain tumor segmentation. To address the uncertainty problem of brain MR image segmentation, the proposed SoBT-RFW method uses the robust rough-fuzzy c-means algorithm. After the segmentation process, asymmetricity is analyzed by using the Zernike moments of each of the tissues segmented in the brain to identify the tumor. Finally, the location of the tumor is searched by a region growing algorithm based on the concept of rough sets. The performance of the proposed SoBT-RFW method, along with a comparison with related approaches, is demonstrated on a set of synthetic and real brain MR images using standard validity indices.
Wydawca
Rocznik
Strony
237--267
Opis fizyczny
Bibliogr. 53 poz., rys.
Twórcy
autor
  • Biomedical Imaging and Bioinformatics Lab Machine Intelligence Unit, Indian Statistical Institute 203 B. T. Road, Kolkata, 700 108, West Bengal, India
autor
  • Biomedical Imaging and Bioinformatics Lab Machine Intelligence Unit, Indian Statistical Institute 203 B. T. Road, Kolkata, 700 108, West Bengal, India
Bibliografia
  • [1] Acharyya, M., Kundu, M. K.: Document Image Segmentation Using Wavelet Scale-Space Features, IEEE Transactions on Circuits and Systems for Video Technology, 12(12), 2002, 1117–1127.
  • [2] Bauer, S., Fejes, T., Slotboom, J., Wiest, R., Nolte, L.-P., Reyes, M.: Segmentation of Brain Tumor Images Based on Integrated Hierarchical Classification and Regularization, 2012.
  • [3] Bauer, S., Nolte, L.-P., Reyes, M.: Fully Automatic Segmentation of Brain Tumor Images Using Support Vector Machine Classification in Combination with Hierarchical Conditional Random Field Regularization, Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention, 6893, 2011.
  • [4] Bezdek, J. C.: Pattern Recognition with Fuzzy Objective Function Algorithms, Plenum, New York, 1981.
  • [5] Bonnie, N. J., Fukui, M. B., Meltzer, C. C., Huang, Q. S., Day, R. S., Greer, P. J., Bozik, M. E.: Brain Tumor Volume Measurement: Comparison of Manual and Semiautomated Methods, Radiology, 212, 1999, 811–816.
  • [6] Bullitt, E., Gerig, G., Pizer, S. M., Aylward, S. R.: Measuring Tortuosity of the Intracerebral Vasculature from MRA Images, IEEE Transactions on Medical Imaging, 22, 2003, 1163–1171.
  • [7] Chen, C. C., Chen, D. C.: Multiresolution Gabor Filters in Texture Analysis, Pattern Recognition Letters, 17(10), 1996, 1069–1076.
  • [8] Clark, M. C., Hall, L. O., Goldgof, D. B., Velthuizen, R., Murtagh, F. R., Silbiger, M.: Automatic Tumor Segmentation Using Knowledge-Based Techniques, IEEE Transactions on Medical Imaging, 117, 1998, 187–201.
  • [9] Cuadra,M. B., Gomez, J., Hagmann, P., Pollo, C., Villemure, J.-G., Dawant, B.M., Thiran, J.-P.: Atlas-Based Segmentation of Pathological Brains Using A Model of Tumor Growth, Proceedings of 5th International Conference on Medical Image Computing and Computer-Assisted Intervention (T. Dohi, R. Kikinis, Eds.), 2488, Lecture Notes in Computer Science, 2002.
  • [10] Fletcher-Heath, L. M., Hall, L. O., Goldgof, D. B., Murtagh, F. R.: Automatic Segmentation of Non-Enhancing Brain Tumors inMagnetic Resonance Images, Artifical Intelligence in Medicine, 21, 2001, 43–63.
  • [11] Fukuda, S., Hirosawa, H.: A Wavelet-Based Texture Feature Set Applied to Classification of Multifrequency Polarimetric SAR Images, IEEE Transactions on Geoscience and Remote Sensing, 37(5), 1999, 2282–2286.
  • [12] Gering, D. T., Grimson, W. E. L., Kikinis, R.: Recognizing Deviations from Normalcy for Brain Tumor Segmentation, Proceedings of 5th International Conference on Medical Image Computing and Computer-Assisted Intervention (T. Dohi, R. Kikinis, Eds.), 2488, Lecture Notes in Computer Science, 2002.
  • [13] Gibbs, P., Buckley, D. L., Blackband, S. J., Horsman, A.: Tumor Volume Determination fromMR Images by Morphological Segmentation, Physics in Medical and Biology, 41, 1996, 2437–2446.
  • [14] Iglesias, J. E., Liu, C.-Y., Thompson, P.M., Tu, Z.: Robust Brain Extraction Across Datasets and Comparison with Publicly Available Methods, IEEE Transactions on Medical Imaging, 30(9), 2011, 1617–1634.
  • [15] Iscan, Z., Dokur, Z., ¨Olmez, T.: Tumor Detection by Using Zernike Moments on Segmented Magnetic Resonance Brain Images, Expert Systems with Applications, 37(3), 2010, 2540–2549.
  • [16] Jain, A. K.: Fundamentals of Digital Image Processing, Prentice Hall Inc., 1989.
  • [17] Jain, A. K., Farrokhnia, F.: Unsupervised Texture Segmentation Using Gabor Filters, Pattern Recognition, 24(12), 1991, 1167–1186.
  • [18] Just, M., Higer, H. P., Schwarz, M., Bohl, J., Fries, G., Pfannenstiel, P., Thelen, M.: Tissue Characterization of Benign Tumors: Use of NMR-Tissue Parameters, Magnetic Resonance Imaging, 6, 1998, 463–472.
  • [19] Kaus, M., Warfield, S., Nabavi, A., Black, P. M., Jolesz, F. A., Kikinis, R.: Automated Segmentation of MR Images of Brain Tumors, Radiology, 218(2), 2001, 586–591.
  • [20] Kaus, M. R., Warfield, S. K., Nabavi, A., Chatzidakis, E., Black, P. M., Jolesz, F. A., Kikinis, R.: Segmentation of Meningiomas and Low Grade Gliomas in MRI, Proceedings of 2nd International Conference on Medical Image Computing and Computer-Assisted Intervention (C. Taylor, A. Colchester, Eds.), 1679, Lecture Notes in Computer Science, 1999.
  • [21] Krishnapuram, R., Keller, J. M.: A Possibilistic Approach to Clustering, IEEE Transactions on Fuzzy Systems, 1(2), 1993, 98–110.
  • [22] Lindsay, R. W., Percival, D. B., Rothrock, D. A.: The Discrete Wavelet Transform and the Scale Analysis of the Surface Properties of Sea Ice, IEEE Transactions on Geoscience and Remote Sensing, 34(3), 1996, 771–787.
  • [23] Maji, P., Kundu, M. K., Chanda, B.: Second Order Fuzzy Measure and Weighted Co-Occurrence Matrix for Segmentation of Brain MR Images, Fundamenta Informaticae, 88(1-2), 2008, 161–176.
  • [24] Maji, P., Pal, S. K.: RFCM: A Hybrid Clustering Algorithm Using Rough and Fuzzy Sets, Fundamenta Informaticae, 80(4), 2007, 475–496.
  • [25] Maji, P., Pal, S. K.: Rough Set Based Generalized Fuzzy C-Means Algorithm and Quantitative Indices, IEEE Transactions on System, Man, and Cybernetics, Part B: Cybernetics, 37(6), 2007, 1529–1540.
  • [26] Maji, P., Pal, S. K.: Rough-Fuzzy Pattern Recognition: Applications in Bioinformatics and Medical Imaging, Wiley-IEEE Computer Society Press, New Jersey, 2012.
  • [27] Maji, P., Paul, S.: Rough Set Based Maximum Relevance-Maximum Significance Criterion and Gene Selection from Microarray Data, International Journal of Approximate Reasoning, 52(3), 2011, 408–426.
  • [28] Maji, P., Paul, S.: Robust Rough-Fuzzy C-Means Algorithm: Design and Applications in Coding and Non-Coding RNA Expression Data Clustering, Fundamenta Informaticae, 124, 2013, 153–174.
  • [29] Maji, P., Paul, S.: Rough-Fuzzy Clustering for Grouping Functionally Similar Genes from Microarray Data, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 10(2), 2013, 286–299.
  • [30] Maji, P., Roy, S.: Rough-Fuzzy Clustering and Unsupervised Feature Selection forWavelet Based MR Image Segmentation, PLoS ONE, 10(4), e0123677, doi:10.1371/journal.pone.0123677, 2015.
  • [31] Mallat, S.: A Theory for Multiresolution Signal Decomposition: The Wavelet Representation, IEEE Transactions on Pattern Analysis and Machine Intelligence, 11(7), 1989, 674–693.
  • [32] McQueen, J.: Some Methods for Classification and Analysis of Multivariate Observations, Proceedings of the 5th Berkeley Symposium on Mathematics, Statistics and Probability, 1967.
  • [33] Meher, S. K., Pal, S. K.: Rough-Wavelet Granular Space and Classification of Multispectral Remote Sensing Image, Applied Soft Computing, 11(4), 2011, 5662–5673.
  • [34] Menze, B. H., Leemput, K., Lashkari, D., Weber, M.-A., Ayache, N., Golland, P.: A Generative Model for Brain Tumor Segmentation in Multi-Modal Images, Medical Image Computing and Computer-Assisted Intervention, 6362, 2010, 151–159.
  • [35] Moon, N., Bullitt, E., Leemput, K. V., Gerig, G.: Automatic Brain and Tumor segmentation, Proceedings of 5th International Conference on Medical Image Computing and Computer-Assisted Intervention (T. Dohi, R. Kikinis, Eds.), 2488, Lecture Notes in Computer Science, 2002.
  • [36] Nie, J., Xue, Z., Liu, T., Young, G. S., Setayesh, K., Guo, L.,Wong, S. T.: Automated Brain Tumor Segmentation Using Spatial Accuracy-WeightedHiddenMarkov Random Field, Computerized Medical Imaging and Graphics, 33(6), 2009, 431–441.
  • [37] Pal, S. K., Skowron, A., Eds.: Rough-Fuzzy Hybridization: A New Trend in Decision Making, Springer-Verlag, Singapore, 1999.
  • [38] Pawlak, Z.: Rough Sets: Theoretical Aspects of Resoning About Data, Kluwer, Dordrecht, The Netherlands, 1991.
  • [39] Porz, N., Bauer, S., Pica, A., Schucht, P., Beck, J., Verma, R. K., Slotboom, J., Reyes, M., Wiest, R.: Multi-Modal Glioblastoma Segmentation: Man Versus Machine, PLoS ONE, 9(5), 2014, e96873. doi:10.1371/journal.pone.0096873.
  • [40] Prastawa, M., Bullitt, E., Ho, S., Gerig, G.: A Brain Tumor Segmentation Framework Based on Outlier Detection, Medical Image Analysis, 8, 2004, 275–283.
  • [41] Prastawa, M., Bullitt, E., Moon, N., Leemput, K. V., Gerig, G.: Automatic Brain Tumor Segmentation by Subject Specific Modification of Atlas Priors, Academic Radiology, 10, 2003, 1341–1348.
  • [42] Roy, S., Maji, P.: A Simple Skull Stripping Algorithm for Brain MRI, Proceedings of the 8th International Conference on Advances in Pattern Recognition, Kolkata, India, IEEE, January 2015.
  • [43] Shattuck, D. W., Leahy, R. M.: BrainSuite: An Automated Cortical Surface Identification Tool, Medical Image Analysis, 6, 2002, 129–142.
  • [44] Smith, S. M.: Fast Robust Automated Brain Extraction, Human Brain Mapping, 17, 2002, 143–155.
  • [45] Stadlbauer, A., Moser, E., Gruber, S., Buslei, R., Nimsky, C., Fahlbusch, R., Ganslandt, O.: Improved Delineation of Brain Tumors: An Automated Method for Segmentation Based on Pathologic Changes of H-MRSI Metabolites in Gliomas, NeuroImage, 23(2), 2004, 454–461.
  • [46] Sung, Y.-C., Han, K.-S., Song, C.-J., Noh, S.-M., Park, J.-W.: Threshold Estimation for Region Segmentation on MR Image of Brain Having the Partial Volume Artifact, Proceeding of the 5th International Conference on Signal Processing, 2, 2000, 1000–1009.
  • [47] Turner, M. R.: Texture Discrimination by Gabor Function, Biological Cybernetics, 55, 1986, 71–82.
  • [48] Unser, M.: Texture Classification and Segmentation Using Wavelet Frames, IEEE Transactions on Image Processing, 4(11), 1995, 1549–1560.
  • [49] Unser, M., Eden, M.: Multiresolution Feature Extraction and Selection for Texture Segmentation, IEEE Transactions on Pattern Analysis and Machine Intelligence, 11, 1989, 717–728.
  • [50] Veloz, A., Chabert, S., Salas, R., Orellana, A., Vielma, J.: Fuzzy Spatial Growing for Glioblastoma Multiforme Segmentation on Brain Magnetic Resonance Imaging, in: Progress in Pattern Recognition, Image Analysis and Applications (L. Rueda, D. Mery, J. Kittler, Eds.), vol. 4756 of Lecture Notes in Computer Science, Springer Berlin Heidelberg, 2007, 861–870.
  • [51] Velthuizen, R. P., Clarke, L. P., Phuphanich, S., Hall, L. O., Bensaid, A. M., Arrington, J. A., Greenberg, H. M., Silbiger, M. L.: Unsupervised Measurement of Brain Tumor Volume on MR Images, Journal of Magnetic Resonance Imaging, 5, 1995, 594–605.
  • [52] Xie, K., Yang, J., Zhang, Z. G., Zhu, Y. M.: Semi-Automated Brain Tumor and Edema Segmentation Using MRI, European Journal of Radiology, 56(1), 2005, 12–19.
  • [53] Zadeh, L. A.: Fuzzy Sets, Information and Control, 8, 1965, 338–353.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-862d99bc-8e49-4d39-8ddd-d90665ad73a6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.